1. Integrate.

\[\int \cos^3 3x \sin^4 3x \, dx \]

2. In class on Monday we discussed that for integrals involving \(\sec^n \theta \tan^m \theta \) we can use the substitution \(u = \sec \theta \) or \(u = \tan \theta \) for many of them.

(a) If \(u = \sec \theta \) what is \(du \)?

(b) If \(u = \tan \theta \) what is \(du \)?

(c) Using the appropriate substitution from above, integrate the following.

\[\int \sec^4 \theta \tan^4 \theta \, d\theta \]

Continued on the other side.
3. For each of the integrals below, choose an appropriate trigonometric substitution, compute the corresponding ‘dx’ term, and draw the associated triangle - please label all three sides. **Do not integrate.**

\[
\int \sqrt{9 + x^2} \, dx
\]

(a) The appropriate trigonometric substitution.

(b) The corresponding ‘dx’ term.

(c) The associated triangle.

\[
\int \sqrt{4x^2 - 1} \, dx
\]

(a) The appropriate trigonometric substitution.

(b) The corresponding ‘dx’ term.

(c) The associated triangle.