Review of Series Tests and Facts

TEST	SERIES	CONDITIONS	RESULT
	Geometric	For $c \neq 0$, $\sum_{n=0}^{\infty} cr^n$	Conv. for $ r < 1$ to $\frac{cr^M}{1-r}$.
		$= cr^{M} + cr^{M+1} + cr^{M+2} + \dots$	Diverges for $ r \ge 1$.
	P-Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	Converges for $p > 1$.
			Diverges for $p \leq 1$.
	Harmonic	$\sum_{n=1}^{\infty} \frac{1}{n} (p=1)$	Diverges
Divergence Test	Any Series	$\lim_{n \to \infty} a_n \neq 0$	$\sum a_n$ diverges
Integral Test	Positive	f(x) is positive,	If $\int_{*}^{\infty} f(x) dx$ converges
		cont. & decreasing	then $\sum_{n=*}^{\infty} a_n$ converges.
		where $f(n) = a_n$	If $\int_{*}^{\infty} \int_{\infty}^{n=*} f(x) dx$ diverges
			then $\sum_{n=*}^{\infty} a_n$ diverges.
Comparison Test	Positive	$0 \le a_n \le b_n \& \sum b_n \text{ conv.}$	$\sum a_n$ converges
		$0 \le b_n \le a_n \& \sum b_n \text{ div.}$	$\sum a_n$ diverges
Limit Comparison Test	Positive	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$	$\sum a_n$ and $\sum b_n$ have the
		a	same behavior
		$\lim_{n \to \infty} \frac{a_n}{b_n} = L = \infty$	If $\sum b_n$ div., $\sum a_n$ div.
		$\lim_{n \to \infty} \frac{a_n}{b_n} = L = 0$	If $\sum b_n$ conv., $\sum a_n$ conv.
Alternating Series Test	$\sum (-1)^n b_n$	$b_n > 0$, $\lim_{n \to \infty} b_n = 0$, and	$\sum (-1)^n b_n$ converges.
		$b_{n+1} < b_n$	
Ratio Test	Any Series	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L$	Absolutely Conv: $L < 1$ Divergent: $L > 1$, or ∞ Inconclusive: $L = 1$
Root Test	Any Series	$\lim_{n \to \infty} \sqrt[n]{ a_n } = L$	Absolutely Conv: $L < 1$ Divergent: $L > 1$, or ∞ Inconclusive: $L = 1$