N	I at	h	274
3	Oct	20	17

Quiz Show Appropriate Work

Name:		
Point Values in	boxes	_

Method of Undetermined Coefficients

To find a particular solution to

$$ay'' + by' + cy = P_m(t)e^{rt}$$

where $P_m(t)$ is a polynomial of degree m, use the form

$$y_p(t) = t^s (A_m t^m + \dots + A_1 t + A_0) e^{rt};$$

if r is not a root of the associated auxiliary equation, take s = 0; if r is a simple root, take s = 1; and if r is a double root, take s = 2.

To find a particular solution to

$$ay'' + by' + cy = P_m(t)e^{\alpha t}\cos\beta t + Q_n(t)e^{\alpha t}\sin\beta t$$

where $P_m(t)$ and $Q_n(t)$ are polynomials of degree m and n, respectively, use the form

$$y_p(t) = t^s \left(A_k t^k + \dots + A_1 t + A_0 \right) e^{\alpha t} \cos \beta t + t^s \left(B_k t^k + \dots + B_1 t + B_0 \right) e^{\alpha t} \sin \beta t;$$

where k is the larger of m and n. If $\alpha + i\beta$ is not a root of the associated auxiliary equation, take s = 0; if so take s = 1.

1. For each of the following, specify the form of a particular solution suggested by the Method of Undetermined Coefficients. **DO NOT SOLVE FOR THE CONSTANTS.**

(a) 2
$$y'' + 9y = 2t + 8\sin 3t$$

 $r^2 + 9 = 0$
 $r = \pm 3i$ $y_p = (At+B) + Ct \cos 3t + Dt \sin 3t$

(b) 2
$$y'' - 2y' + y = 2te^t - t^2e^{2t}$$

$$r^2 - 2r + 1 = 0$$

$$(r - 1)^2 = 0$$

$$r = 1$$

$$\sqrt{1 - 2} = 1$$

$$\sqrt{1 - 2}$$

2. 6 Find a general solution for

$$y'' + 4y = 10te^t.$$

A general solution is then