\qquad Name: \qquad
Due: 27 Nov 2018

1. For $t>0$, consider the following

$$
\mathbf{A}(t)=\left[\begin{array}{cc}
0 & 1 \\
-1 / t & (t+1) / t
\end{array}\right], \mathbf{x}_{1}(t)=\left[\begin{array}{c}
e^{t} \\
e^{t}
\end{array}\right], \text { and } \mathbf{x}_{2}(t)=\left[\begin{array}{c}
t+1 \\
1
\end{array}\right] .
$$

(a) 3 Show $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is a fundamental solution set^{1} for $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$.
(b) 2 Find the solution to the initial value problem $\mathbf{x}^{\prime}=\mathbf{A x}, \mathbf{x}(1)=\left[\begin{array}{l}7 \\ 4\end{array}\right]$.

[^0]2. Two tanks are initially filled with 1 kL of pure water. A solution with $10 \mathrm{~kg} / \mathrm{kL}$ of salt is flowing into tank 1 at $5 \mathrm{~kL} / \mathrm{hr}$. A solution with $20 \mathrm{~kg} / \mathrm{kL}$ of salt is flowing into tank 2 at $5 \mathrm{~kL} / \mathrm{hr}$. Both tanks are well mixed. The resulting solution is flowing from tank 1 into tank 2 at $3 \mathrm{~kL} / \mathrm{hr}$, and from tank 2 into tank 1 at $2 \mathrm{~kL} / \mathrm{hr}$. Tank 1 is being drained at $4 \mathrm{~kL} / \mathrm{hr}$ and tank 2 is being drained at $6 \mathrm{~kL} / \mathrm{hr}$. Let $x(t)$ be the amount of salt in tank 1 in kg , and $y(t)$ be the amount of salt in tank 2 in kg .

(a) 2 Set up an initial value problem that models the amount of salt in each tank.
\[

\left[$$
\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}
$$\right]=
\]

1 Identify the x-nullcline(s), the y-nullcline(s), and any equilibrium ${ }^{2}$.

1 Carefully sketch the phase plane for this system for $[0,50] \times[0,50]$. Include the nullclines (with direction arrows) and equilibrium you found above. Also include the solution curves that satisfy the initial data $[0,0]^{T}$ and $[40,20]^{T}$.

1 In a sentence or two, explain what the equilibrium solution means in this system.

[^1]
[^0]: ${ }^{1}$ Show: (i) \mathbf{x}_{1} and \mathbf{x}_{2} are solutions, and (ii) they are linearly independent. (Use the Wronskian.)

[^1]: ${ }^{2}$ Your equilibrium solution should have integer values for each component.

