Exam 2

- Variation of Parameters

If y_{1} and y_{2} are linearly independent solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, then a particular solution to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ is given by

$$
y_{p}(t)=y_{1}(t) \int \frac{-g(t) y_{2}(t)}{W\left[y_{1}, y_{2}\right](t)} d t+y_{2}(t) \int \frac{g(t) y_{1}(t)}{W\left[y_{1}, y_{2}\right](t)} d t
$$

- Reduction of Order

If $y_{1}(t)$ is a solution, not identically zero, to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ on I, then

$$
y_{2}(t)=y_{1}(t) \int \frac{e^{-\int p(t) d t}}{\left(y_{1}(t)\right)^{2}} d t
$$

is a second, linearly independent solution.

- A Trigonometric Identity

$A \cos \theta+B \sin \theta=C \cos (\theta-\phi)$ where $C=\sqrt{A^{2}+B^{2}}$ and $\phi= \begin{cases}\arctan (B / A), & A>0 \\ \arctan (B / A)+\pi, & A<0, B>0 \\ \arctan (B / A)-\pi, & A<0, B<0\end{cases}$

