If $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible then $\mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

Theorem 2.40.

Suppose that \mathbf{A} is a 2×2 matrix with one eigenvalue λ of multiplicity 2 , and suppose that the eigenspace of λ has dimension 1. Let \mathbf{v}_{1} be a nonzero eigenvector, and choose \mathbf{v}_{2} such that $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{2}=\mathbf{v}_{1}$. Then

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}_{1} \text { and } \\
& \mathbf{x}_{2}(t)=e^{\lambda t}\left[\mathbf{v}_{2}+t \mathbf{v}_{1}\right]
\end{aligned}
$$

form a fundamental set of solutions to the system $\mathrm{x}^{\prime}=\mathbf{A x}$.

Jacobian.

For a planar autonomous system given by

$$
\begin{aligned}
x^{\prime} & =f(x, y), \\
y^{\prime} & =g(x, y),
\end{aligned}
$$

the Jacobian of $\left[\begin{array}{l}f \\ g\end{array}\right]$ at $\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$ is

$$
J=J\left(x_{0}, y_{0}\right)=\left[\begin{array}{ll}
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) & \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \\
\frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right) & \frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right)
\end{array}\right] .
$$

Poincaré Diagram: Classification of Phase Portaits in the $(\operatorname{det} A, \operatorname{Tr} A)$-plane

