Math 274 MUCs Examples and Forms

Section: 4.4

It is important to practice the correct form for the Method of Undetermined Coefficients. Below you will find a number of examples and some exercises for you to try. Do not try to solve for the constants, just specify the form a solution should have.

1. When there is no overlap with solutions to the homogeneous equation we use a form based on the inhomogeneity.

Examples:

(a)
$$y'' - y' - 6y = 5$$

(b) $y'' - y' - 6y = 5t$
 $y_p = At + B$
(c) $y'' - y' - 6y = 5t^2$
 $y_p = At^2 + Bt + C$
(d) $y'' - y' - 6y = e^{5t}$
 $y_p = Ae^{5t}$
(e) $y'' - y' - 6y = (t + 3)e^{5t}$
 $y_p = A\cos 5t + B\sin 5t$
(f) $y'' - y' - 6y = t\cos 5t$
 $y_p = A\cos 5t + B\sin 5t$
(g) $y'' - y' - 6y = e^{3t}\cos 5t$
 $y_p = Ae^{3t}\cos 5t + Be^{3t}\sin 5t$
(i) $y'' + 25y = e^{3t}\cos 5t$

Exercises:

Exercises:

(a)
$$y'' - y' - 2y = 4e^{3t}$$

(b) $y'' - y' - 2y = -4t$

(c) $y'' - y' - 2y = 4e^{3t}$

(d) $y'' - y' - 2y = 4e^{3t} - 4t$

(e) $y'' - 2y = 20\cos 2t$

(f) $y'' + 25y = e^{5t}$

(g) $y'' + 25y = e^{t}\sin 5t$

(g) $y'' + 25y = t^{2} - 7$

(h) $y'' + 25y = \sin t + \cos 2t$

(i) $y'' + 2y' + y = (3t + 4)e^{2t}$

(ii) $y'' + 2y' + y = 7t \sin t$

(k) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(h) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(h) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(h) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(h) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(h) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(h) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(g) $y'' + 2y' + y = 2te^{-t}\sin t$

(h) $y'' + 2y' + y = 2te^{-t}\sin t$

2. When there is overlap with solutions to the homogeneous equation we supplement the form with an extra t, or t^2 in the case of repeated roots.

Examples:

(a)
$$y'' - y = e^t$$
 $y_p = Ate^t$
(b) $y'' - y = e^t + te^{3t}$ $y_p = Ate^t + (Bt + C)e^{3t}$
(c) $y'' - y = t^2e^t + 4$ $y_p = t(At^2 + Bt + C)e^t + D$
(d) $y'' + 9y = \cos 3t$ $y_p = At\cos 3t + Bt\sin 3t$
(e) $y'' + 9y = t\sin 3t$ $y_p = t(At + B)\cos 3t + t(Ct + D)\sin 3t$
(f) $y'' - 4y' + 4y = e^{2t}$ $y_p = At^2e^{2t}$
(g) $y'' - 4y' + 4y = (7t^2 + 3)e^{2t} + 3t - 1$ $y_p = t^2(At^2 + Bt + C)e^{2t} + (Dt + E)$

Exercises:

$$\lambda_{1}^{2} = \lambda_{2}^{2} + \lambda_{3}^{2} = \lambda_{4}^{2} + \lambda_{5}^{2} = \lambda_{5$$

3. It is often convenient to consider complex exponentials when using the Method of Undetermined Coefficients.

Examples:

(a)
$$y'' - y' - 6y = 5 \sin 2t = \text{Im}(5e^{2ti})$$
 $z_p = Ae^{2ti}$
(b) $y'' - y' - 6y = 5t \sin 2t = \text{Im}(5te^{2ti})$ $z_p = (At + B)e^{2ti}$
(c) $y'' - y' - 6y = e^t \sin 2t = \text{Im}(e^{(1+2i)t})$ $z_p = Ae^{(1+2i)t}$
(d) $y'' + 9y = \cos 3t = \text{Re}(e^{3it})$ $z_p = Ate^{3it}$

Exercises:

(a)
$$y'' + 4y = \cos 2t = \Re(e^{2ti})$$
 $2\rho = A + e^{2ti}$
(b) $y'' - y' - 2y = 20 \sin 2t = \Im(20e^{2it})$ $Z_{\uparrow} = A e^{2ti}$
(c) $y'' - y' - 2y = 3t \cos 2t = \Re(3 + e^{2it})$ $Z_{\rho} = (A + B) e^{2ti}$
(d) $y'' - y' - 2y = e^{3t} \sin 2t = \Im(e^{(3+2i)t})$ $Z_{\rho} = A e^{(3+2i)t}$