Math 274 MUCs Examples and Forms

Section: 4.4

It is important to practice the correct form for the Method of Undetermined Coefficients. Below you
will find a number of examples and some exercises for you to try. Do not try to solve for the constants,
just specify the form a solution should have.

1. When there is no overlap with solutions to the homogeneous equation we use a form based on the

inhomogeneity.

Examples:

() y'—y' —6y =5

(b) y" —y — 6y =5t

(©) '~y — 6y = 5¢°

(d) ¥ —y' — 6y =€

(e) ¥ —y — 6y = (t+3)e
(f) y" —y' — 6y = cos bt

(8) ¥y —y — 6y =tcosbt
(h) ¥ — ' — 6y = e cos 5t
(i) ¥ + 25y = €% cos 5t

Exercises:

(@) ¥" -y — 2y = 4e**

(b) y'~y' -2y =4t
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(d) ¥ — 9y — 2y = 20cos2t
(e) y" + 25y = €%
5 (f) y" + 25y = e'sin bt
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(g) ¥" +25y =12 -7
(h) y” + 25y = sint + cos 2t
(i) ¥+ 2y +y = (3t + 4)e?*
(3) ¥ +2y +y=Tt+ cost
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O v +’2y’ +y = 2te"tsint

Yp=A

yp = At+ B

yp=At? + Bt + C

Yp = Aebt

yp = (At + B)e"

Yp = Acos 5t -+ Bsin 5t

yp = (At + B) cos bt + (Ct + D) sin 5t
yp = Ae® cos 5t + Bedt sin 5t

yp = Ae® cos 5t + Be® sin 5t
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2. When there is overlap with solutions to the homogeneous equation we supplement the form with

an extra t, or t in the case of repeated roots.

Examples:

(@) vy ~y=¢

(b) ¥ —y =€+t

(c) ¥ —y =1t +4

(d) ¥+ 9y = cos3t

(e) ¥+ 9y =tsin3t

(f) y" — 4y’ + 4y =e*

(8) v — 4y +4y = (T2 +3)e? + 3t — 1

Exercises:

(a) ¥’ — 9 — 2y = 18e*
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) (c) y" + 4y =sin 2t
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(d) y"+4y = tsin2t +3cos2t Y
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yp = Atet

yp = Ate' + (Bt + C)e

Yp = t(At2 + Bt + C)e! + D

yp = At cos 3t + Btsin 3t

yp = t(At + B) cos 3t + t(Ct + D) sin 3t
Yp = At2e2t

yp = t2(At? + Bt + C)e* + (Dt + E)
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3. It is often convenient to consider complex exponentials when using the Method of Undetermined

Coefficients.

Examples:

(a) ¥" —y — 6y = 5sin 2t = Im(5e%%)
(b) ¥" —y' — 6y = 5tsin 2t = Im(5te?)
(¢) ¥ —y — 6y = e’ sin 2t = Im(e(1+20t)
(d) ¥" + 9y = cos 3t = Re(e®?)

Exercises:

(a) y” + 4y = cos2t = Pe, (&zti )
(b) yl/ . y’ — 2y = 20sin 2t = va (ZD 621'&)
(¢) ¥ -y — 2y = 3tcos2t = ,2, (34 62i+ >

(d) v~y — 2y =e¥sin2t = Tmn (
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