1. Express the following functions using step functions and determine their Laplace transforms.
(a) $f(t)= \begin{cases}0, & t<1 \\ 1, & 1<t<2 \\ 2, & 2<t\end{cases}$
(b) $g(t)= \begin{cases}t, & t<\pi \\ e^{3 t} \cos 2 t, & \pi<t\end{cases}$
2. Determine the inverse Laplace transform for the following.
(a) $H(s)=\frac{1}{s}+\frac{e^{-2 s}}{s^{2}}+\frac{e^{-4 s}}{s^{3}}$
(b) $K(s)=\frac{8 e^{4-2 s}}{(s-2)\left(s^{2}+4\right)}$
3. Applying the Laplace transform to the initial value problem

$$
y^{\prime \prime}+4 y=f(t), \quad y(0)=0, y^{\prime}(0)=0
$$

with

$$
f(t)= \begin{cases}10 e^{t}, & t<1 \\ -8 e^{2 t}, & 1<2<t \\ 0, & 2<t\end{cases}
$$

gives

$$
Y(s)=\frac{10}{(s-1)\left(s^{2}+4\right)}+e^{-s}\left[\frac{-8 e^{2}}{(s-2)\left(s^{2}+4\right)}-\frac{10 e}{(s-1)\left(s^{2}+4\right)}\right]+e^{-2 s}\left[\frac{8 e^{4}}{(s-2)\left(s^{2}+4\right)}\right] .
$$

Determine $y(t)=\mathscr{L}^{-1}\{Y(s)\}$, the solution to the given initial value problem.
You should reference the partial fraction decomposition in 2(b).
4. Apply the Laplace transform to the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}-6 y=e^{3 t}, \quad y(0)=2, y^{\prime}(0)=0
$$

to express $Y(s)=\mathscr{L}\{y(t)\}$ in the form $Y(s)=\frac{P(s)}{Q(s)}$; express $P(s)$ as a combined simplified polynomial of the form $P(s)=a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}$ and $Q(s)$ as a fully factored polynomial.
Do not find the inverse Laplace transform.
5. Assume $g(t)$ is piecewise continuous and of exponential order and consider the initial value problem

$$
y^{\prime}+3 y=g(t), \quad y(0)=2
$$

(a) Find the solution. Express your solution in terms of a convolution.
(b) Let $g(t)=3 t$, find the solution, i.e. evaluate the convolution integral.
6. Find the solution to the symbolic initial value problem

$$
y^{\prime \prime}+2 \pi y^{\prime}+5 \pi^{2} y=4 \pi \delta(t-1), \quad x(0)=0, x^{\prime}(0)=2 \pi .
$$

