# Brief Table of Laplace Transforms 

| $f(t)$ | $F(s)=\mathscr{L}\{f\}(s)$ |
| :--- | :--- |
| 1 | $\frac{1}{s}$ |
| $e^{a t}$ | $\frac{1}{s-a}$ |
| $t^{n}, n=1,2, \ldots$ | $\frac{n!}{s^{n+1}}$ |
| $\sin b t$ | $\frac{b}{s^{2}+b^{2}}$ |
| $\cos b t$ | $\frac{s}{s^{2}+b^{2}}$ |
| $e^{a t} t^{n}, n=1,2, \ldots$ | $\frac{n!}{(s-a)^{n+1}}$ |
| $e^{a t} \sin b t$ | $\frac{F}{(s-a)^{2}+b^{2}}$ |
| $e^{a t} \cos b t$ | $\frac{s-a}{(s-a)^{2}+b^{2}}$ |
| $t^{n} f(t)$ | $s^{2} F(s)-s f(0)-f^{\prime}(0)$ |
| $f^{\prime \prime}(t)$ | $(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)$ |
|  | $F(s-a)$ |

For $a \geq 0$,

$$
\begin{array}{ll}
f(t-a) u(t-a) & e^{-a s} F(s) \\
g(t) u(t-a) & e^{-a s} \mathscr{L}\{g(t+a)\}(s) \\
\delta(t-a) & e^{-a s}
\end{array}
$$

## Theorem 9.

If $f$ has period $T$ and is piecewise continuous on $[0, T]$, then the Laplace transform of one period, $F_{T}(s)$, is related to the Laplace transform by

$$
F(s)=\frac{F_{T}(s)}{1-e^{-s T}} .
$$

