Brief Table of Laplace Transforms

f(t)	$F(s) = \mathscr{L}\{f\}(s)$
1	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$
$t^n, n = 1, 2, \dots$	$\frac{n!}{s^{n+1}}$
$\sin bt$	$\frac{b}{s^2 + b^2}$
$\cos bt$	$\frac{s}{s^2 + b^2}$
$e^{at}t^n, n=1,2,\dots$	$\frac{n!}{(s-a)^{n+1}}$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2 + b^2}$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
$e^{at}f(t)$	F(s-a)
f'(t)	sF(s) - f(0)
f''(t)	$s^2 F(s) - s f(0) - f'(0)$
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} F(s)$
(f*g)(t)	F(s)G(s)
For $a \geq 0$,	
f(t-a)u(t-a)	$e^{-as}F(s)$
g(t)u(t-a)	$e^{-as}\mathcal{L}\{g(t+a)\}(s)$
$\delta(t-a)$	e^{-as}

Theorem 9.

If f has period T and is piecewise continuous on [0, T], then the Laplace transform of one period, $F_T(s)$, is related to the Laplace transform by

$$F(s) = \frac{F_T(s)}{1 - e^{-sT}}.$$