It is important to understand the correct form of a solution suggested by the Method of Undetermined Coefficients. The following information is given in the class.

Method of Undetermined Coefficients

To find a particular solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=P_{m}(t) e^{r t}
$$

where $P_{m}(t)$ is a polynomial of degree m, use the form

$$
y_{p}(t)=t^{s}\left(A_{m} t^{m}+\cdots+A_{1} t+A_{0}\right) e^{r t}
$$

if r is not a root of the associated auxiliary equation, take $s=0$; if r is a simple root, take $s=1$; and if r is a double root, take $s=2$.
To find a particular solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=P_{m}(t) e^{\alpha t} \cos \beta t+Q_{n}(t) e^{\alpha t} \sin \beta t
$$

where $P_{m}(t)$ and $Q_{n}(t)$ are polynomials of degree m and n, respectively, use the form

$$
y_{p}(t)=t^{s}\left(A_{k} t^{k}+\cdots+A_{1} t+A_{0}\right) e^{\alpha t} \cos \beta t+t^{s}\left(B_{k} t^{k}+\cdots+B_{1} t+B_{0}\right) e^{\alpha t} \sin \beta t
$$

where k is the larger of m and n. If $\alpha+i \beta$ is not a root of the associated auxiliary equation, take $s=0$; if so take $s=1$.
Examples.

Equation	Roots of Ch. Eq	Form
$y^{\prime \prime}-y^{\prime}-6 y=t^{2}$	$r=3,-2$	$y_{p}=A t^{2}+B t+C$
$y^{\prime \prime}-y^{\prime}-6 y=t^{2} e^{t}$	$r=3,-2$	$y_{p}=\left(A t^{2}+B t+C\right) e^{t}$
$y^{\prime \prime}-y^{\prime}-6 y=t^{2} e^{3 t}$	$r=3,-2$	$y_{p}=t\left(A t^{2}+B t+C\right) e^{3 t}$
$y^{\prime \prime}-y^{\prime}-6 y=t^{2} e^{t}+t^{2} e^{3 t}$	$r=3,-2$	$y_{p}=\left(A t^{2}+B t+C\right) e^{t}+t\left(D t^{2}+E t+F\right) e^{3 t}$
$y^{\prime \prime}-2 y^{\prime}+1=4 t^{2} e^{t}$	$y_{p}=t^{2}\left(A t^{2}+B t+C\right) e^{t}$	
$y^{\prime \prime}-2 y^{\prime}+1=4 t^{2} e^{t}-3 t$	$r=1,1$	$y_{p}=t^{2}\left(A t^{2}+B t+C\right) e^{t}+D t+E$
$y^{\prime \prime}+9 y=2 t+1$	$r= \pm 3 i$	$y_{p}=A t+B$
$y^{\prime \prime}+9 y=\cos 2 t$	$r= \pm 3 i$	$y_{p}=A \cos 2 t+B \sin 2 t$
$y^{\prime \prime}+9 y=\cos 3 t$	$r= \pm 3 i$	$y_{p}=A t \cos 3 t+B t \sin 3 t$
$y^{\prime \prime}+9 y=3 t \cos 3 t$	$r= \pm 3 i$	$r= \pm 3 i$
$y^{\prime \prime}+9 y=-7 e^{t} \cos 3 t$	$r=-1 \pm 2 i$	$y_{p}=(A t+B) t \cos 3 t+(C t+D) t \sin 3 t$
$y^{\prime \prime}+2 y^{\prime}+5=14 \cos 2 t$	$r=-1 \pm 2 i$	$y_{p}=A e^{t} \cos 3 t+B e^{t} \sin 3 t$
$y^{\prime \prime}+2 y^{\prime}+5=-8 e^{-2 t} \cos 2 t$	$y_{p}=A \cos 2 t+B \sin 2 t$	
$y^{\prime \prime}+2 y^{\prime}+5=-8 e^{-t} \cos 2 t$	$r=-1 \pm 2 i$	$y_{p}=A e^{-2 t} \cos 2 t+B e^{-2 t} \sin 2 t$
		$y_{p}=A t e^{-t} \cos 2 t+B t e^{-t} \sin 2 t$

Exercise.

Equation	Roots of Ch. Eq	Form
$(1) y^{\prime \prime}-y^{\prime}-2 y=2 t$		

(1) $y^{\prime \prime}-y^{\prime}-2 y=2 t$
(2) $y^{\prime \prime}-y^{\prime}-2 y=2 t+7 e^{t}$
(3) $y^{\prime \prime}-y^{\prime}-2 y=2 t-7 e^{2 t}$
(4) $y^{\prime \prime}-y^{\prime}-2 y=2 t+\cos 2 t$
(5) $y^{\prime \prime}+4 y=7 t^{2}$
(6) $y^{\prime \prime}+4 y=3 t \cos t$
(7) $y^{\prime \prime}+4 y=23 \sin 2 t$
(8) $y^{\prime \prime}+4 y=7 t e^{t} \cos 2 t$

Solutions.

(1) $y_{p}=A t+B$, (2) $y_{p}=A t+B+C e^{t}$, (3) $y_{p}=A t+B+C t e^{2 t}$, (4) $y_{p}=A t+B+C \cos 2 t+D \sin 2 t$,
(5) $y_{p}=A t^{2}+B t+C$, (6) $y_{p}=(A t+B) \cos t+(C t+D) \sin t$, (7) $y_{p}=A t \cos 2 t+B t \sin 2 t$, (8) $(A t+B) e^{t} \cos 2 t+(C t+D) e^{t} \sin 2 t$

