Due: 20 Apr 2018

## MUCs/VoP Thing

Show Appropriate Work

Name:
Point Values in boxes.

1. We are interested in solving the nonhomogeneous equation $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{f}(t)$ where

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right], \text { and } \mathbf{f}(t)=\left[\begin{array}{c}
3+5 e^{2 t} \\
-6+2 e^{2 t}
\end{array}\right]
$$

We will do so by breaking it into the following pieces.
(a) 1 Find a general solution to the homogeneous equation $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$.
(b) 2 Use the Method of Undetermined Coefficients to find a particular solution to

$$
\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)+\left[\begin{array}{c}
3 \\
-6
\end{array}\right]
$$

(c) 2 Use the Method of Undetermined Coefficients to find a particular solution to

$$
\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)+\left[\begin{array}{l}
5 e^{2 t} \\
2 e^{2 t}
\end{array}\right]
$$

(d) 1 Find a general solution to $\mathbf{x}^{\prime}(t)=\mathbf{A x}(t)+\mathbf{f}(t)$.
2. 4 Find a general solution for the nonhomogeneous equation $\mathbf{x}^{\prime}(t)=\mathbf{B x}(t)+\mathbf{g}(t)$ where

$$
\mathbf{B}=\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right], \text { and } \mathbf{g}(t)=\left[\begin{array}{l}
18 e^{t} \\
9 e^{4 t}
\end{array}\right] .
$$

The Method of Undetermined Coefficients is inconvenient in this case. Use Variation of Parameters to find a particular solution and then find a general solution.

