1. The equation

\[(x + y + 7)dx - (\cos(y) - x)dy = 0 \]

is exact. Find an implicit general solution.

\[\left(\frac{x + y + 7}{x} \right) dx + \left(y - \cos y \right) dy = 0 \]

\[\frac{y}{2} + xy + 7x - \sin y = C \]

2. Find an implicit general solution to

\[\frac{dy}{dt} = \frac{te^{(y^2 + 1)}}{y}. \]

\[\int \frac{y \, dy}{y^2 + 1} = \int e^t \, dt \]

\[u = t \quad \text{and} \quad v = e^t \quad \text{and} \quad du = dt \quad \text{and} \quad v = e^t \]

\[\frac{1}{2} \ln (y^2 + 1) = te^t - e^t + C \]

[Continued on the reverse.]
On Wednesday I introduced Bernoulli equations. The equation

\[\frac{dy}{dx} - \frac{y}{2x} = \left(\frac{x}{y} \right)^3 \]

is Bernoulli. After applying the substitution \(v = y^4 \) to (1) we have the new equation

\[\frac{1}{4} \frac{dv}{dx} - \frac{v}{2x} = x^3. \]

Find an explicit general solution to (2).

\[\frac{dv}{dx} - \frac{2}{x} v = 4x^3 \]

\[\mu(x) = e \int \frac{-2}{x} \, dx = e^{-2 \ln |x|} = x^{-2} \]

Choose

\[v = x^2 \int 4x \, dx \]

\[= x^2 \left(2x^2 + C \right) \]

Bonus

\[y = \frac{1}{4} \left[2x^4 + C x^2 \right]^\frac{1}{4} \]

solves (1).