1. Consider the autonomous differential equation \(\frac{dp}{dt} = \frac{p(4-p)}{4} \).

(a) **5** Sketch the isoclines passing through \((0, -2), (0, 0), (0, 2), (0, 4),\) and \((0, 6)\). Include direction arrows.

(b) **4** Sketch the solution curves passing through \((0, -2), (0, 2), (0, 4),\) and \((0, 6)\).

(c) **10** Find the general solution. Did you lose any solutions?

(d) **1** Solve the IVP \(p(0) = 2 \).

\[
\frac{dp}{dt} = \frac{p(4-p)}{4} \quad \text{so} \quad \int \frac{4}{p(4-p)} \, dp = \int dt
\]

Note: \(\frac{A}{p(4-p)}, \frac{A}{p}, \frac{B}{4-p} \)

\[
A = A(4-p) + Bp \quad \text{so} \quad \int \left(\frac{1}{p} + \frac{1}{4-p} \right) \, dp = \int dt \quad \text{or} \quad \ln |p| - \ln |4-p| = t + C
\]

\[
p = C e^t \quad \text{or} \quad \frac{p}{4-p} = C e^t \quad \text{or} \quad \frac{p}{4} = C e^t - C e^t p
\]

Finally, \(p = \frac{4 C e^t}{1 + C e^t} \)

\[
p = 0 \quad \text{or} \quad p = 4 \quad \text{were lost, but the root is reclaimed by letting } C = 0, \text{ so only } p = 4 \text{ remains lost.}
\]

The solution to the IVP is

\[
p = \frac{4 e^t}{1 + C e^t} \quad (\text{i.e. } C = 1).
\]
2. Solve the initial value problem

\[\frac{dy}{dt} = 4t + 2ty, \quad y(0) = 1. \]

\[\frac{dy}{dt} - 2ty = 4t \quad \text{so} \quad e^{-t} y = e^{-t} \int 4t e^t dt = e^{-t} \left[-2e^{-t} + C \right] = Ce^t - 2 \]

is the general solution.

The solution to the IVP is

\[y = 3e^t - 2. \]

Note: This equation is also separable.

\[\int \frac{dy}{2y} = \int 2t dt \]

\[\ln 2y = t^2 + C \]

\[2y = Ce^{t^2} \]

\[y = Ce^{t^2} - 2. \]

3. Consider the equation \((1 - y \sin(xy))dx + (\cos y - x \sin(xy))dy = 0.\)

(a) Show the equation is exact.

\[\frac{\partial M}{\partial y} = -\sin(xy) - xy \cos(xy) \]

Since \(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \), the equation is exact!

(b) Find the general solution. An implicit solution is expected.

\[\chi + \cos \chi \cdot y + \sin y = C \]
4. Using an appropriate substitution, find the general solution for the following.

(a) \[
\frac{dy}{dx} = \frac{2y^2 - x^2}{xy} = \frac{2\left(\frac{y}{x}\right)^2 - 1}{\left(\frac{y}{x}\right)}
\]
Let \(v = \frac{y}{x} \) so \(v = y \) so \(v + x \frac{dv}{dx} = \frac{dy}{dx} \)
Substituting gives
\[
\frac{v}{x} + \frac{dv}{dx} = \frac{2v^2 - 1}{v}
\]
so \(x\frac{dv}{dx} = \frac{v^2 - 1}{v} \). Now separate \(\frac{v}{\sqrt{v^2 - 1}} \) \(dv = \frac{dy}{x} \). Integrating \(v \) yields
\[
\frac{1}{2} \ln |v^2 - 1| = \ln |x| + C
\]
so \(v^2 = Cx^2 + 1 \) and finally \(y = \pm \sqrt{Cx^2 + x^2} \).

Although it wasn't intended to be, this equation is also Bernoulli.

(b) \[
\frac{dx}{dt} = x + \frac{t}{x^2}
\]
so \(\frac{dx}{dt} = \frac{t}{x^2} \). Letting \(v = \frac{y}{x} \) so \(\frac{dv}{dt} = \frac{y}{x} \). Substituting and simplifying gives
\[
\frac{dv}{dt} - 3v = 3t
\]
so \(\mu(t) = e^{-3t} \). Integrating \(\mu(t) \) yields
\[
v = e^{3t} \int 3te^{-3t} dt
\]
Applying Integration by Parts to the integral yields
\[
v = e^{3t} \left[-te^{-3t} - \frac{1}{3} e^{-3t} + C \right] = Ce^{3t} - t - \frac{1}{3}.
\]
An explicit solution is then
\[
\kappa = \left(Ce^{3t} - t - \frac{1}{3} \right)^{\frac{1}{3}}
\]

HINT: In one of the above you likely lost valid solutions, make sure you find them.

Note: In the homogeneous solution to (a), solutions of the form \(v = \pm 1 \) were lost, i.e. \(y = \pm x \). However they are required when \(C = 0 \).
5. Consider a two tank system as in the figure.

\[\begin{array}{c}
5 \text{ L/min} \rightarrow \\
\text{Tank 1} \\
\text{s(t)} \\
100 \text{ L} \\
5 \text{ L/min} \rightarrow \\
\text{Tank 2} \\
\text{x(t)} \\
100 \text{ L}
\end{array} \]

(a) The first tank is initially filled with 100 L of pure water. A brine solution containing 0.2 kg of salt per liter is being pumped into the tank at a rate of 5 L/min. The tank is well mixed and drains at 5 L/min. Let s be the amount of salt (in kg) in the tank at time t (in min).

i. [4] Set up an initial value problem (a differential equation with an initial condition) modeling the amount of salt in the tank at time t. **DO NOT SOLVE.**

\[\frac{ds}{dt} = 5 \left(0.2 \right) - 5 \left(\frac{s}{100} \right) \quad s(0) = 0 \]

ii. [2] As \(t \to \infty \), what can you say about the amount of salt in the tank?

\[s \rightarrow 20 \]

(b) A second tank is initially filled with 100 L of a brine solution with a concentration of 0.3 kg/L. The solution flowing out of the first tank flows into the second tank at 5 L/min. The second tank is also well stirred and drains at 5 L/min. Let x be the amount of salt (in kg) in the tank at time t (in min).

i. [12] Determine the amount of salt in the second tank at any time \(t \). Use the fact that the amount of salt in the first tank (in kg) is given by \(s(t) = 20 - 20e^{-t/20} \).

\[\frac{dx}{dt} = 5 \left(\frac{20 - 20e^{-t/20}}{100} \right) - \frac{5x}{100} \quad x(0) = 30 \]

\[\frac{dx}{dt} = 1 - e^{-t/30} - \frac{5x}{100} \]

\[\frac{dx}{dt} + \frac{5x}{100} = 1 - e^{-t/30} \quad x(t) = e^{5t/100} + e^{-t/30} \]

\[x = e^{-t/30} \int \left(e^{t/30} - 1 \right) dt = e^{-t/30} \left[20e^{t/30} - t + C \right] = 20 + e^{-t/30} \left(C - t \right) \]

Since \(x(0) = 30 \), \(C = 10 \). If we have

\[x(t) = 20 + e^{-t/30} \left(10 - t \right) \]

ii. [2] When is the concentration of salt in the second tank the highest?