Math 274 Homework

Sections: 1.1-1.3, Phase Line Due: May 2018

Name: _____

Point values in boxes.

1. 2 Verify $\phi(x) = \frac{x}{\ln |x| + c}$, where c is an arbitrary constant, is a one-parameter family of solutions to

$$\frac{dy}{dx} = \frac{y(x-y)}{x^2}.$$

2. 2 The direction field for $\frac{dy}{dx} = f(x, y)$ is shown below.

	<u>/ ·</u>	Ŕ	И	R	$_{\mathbf{v}}y$	3 🗸	Ŕ	R	K	R	1	/
1	1	7	\searrow	\searrow	\checkmark	2	\checkmark	\searrow	\searrow	7	1	í
٨	7 1	7	~	\rightarrow	\searrow	2	\searrow	\rightarrow	~	1	1	í
٨	1	1	7	\rightarrow	\rightarrow	1-,	\rightarrow	\rightarrow	7	1	1	1
ĉ	1	1	R	7	\rightarrow	\rightarrow	\rightarrow	7	R	1 1	1	1
	1 -											
٨	1	7	7	\longrightarrow	~~ ·	-1-	\searrow	\longrightarrow	7	1	1	ı 1
٨	1	7		Ν.	×	-2^{\checkmark}	$\mathbf{N}_{\mathbf{r}}$	Ν.		7	1	4

Sketch the solution curves satisfying the following initial data.

(a)
$$y(0) = 0$$
 (b) $y(-1) = 2$ (c) $y(0) = -1$

3. 2 For each of the following equations, label the equilibria and classify each as a sink, source, or node on the phase line. Include direction arrows. Additionally, for each, predict the asymptotic behavior as $t \to \infty$ of the solution satisfying y(0) = 0.9.

(a) $y' = y^4 - y^2$

(b)
$$y' = y^4 - y^2 + 0.1$$

4. 1 Review Integration by Parts and evaluate

$$\int x^2 e^{-3x} \, dx.$$

5. 1 Review Partial Fraction Decomposition and evaluate

$$\int \frac{2}{y^2 - 1} \, dy.$$

6. 1 Read section 2.2 in your text. The differential equation

$$\frac{dy}{dx} = \frac{x^2 y^2 - x^2}{2e^{3x}} \tag{1}$$

is separable, find an implicit general solution. You should find the integrals above useful.

7. 1 Verify that both $y \equiv 1$ and $y \equiv -1$ are solutions to (1). Both solutions were lost when we solved the equation; when were they lost?