\qquad
Sections: 4.6,4.7
Point Values in boxes.
Due: 23 May 2018

1. 1 The Bessel equation of order one-half

$$
t^{2} y^{\prime \prime}+t y^{\prime}+\left(t^{2}-\frac{1}{4}\right) y=0, \quad t>0
$$

has solutions $y_{1}=t^{-1 / 2} \cos t$ and $y_{1}=t^{-1 / 2} \sin t$. Use the Wronskian to verify that y_{1} and y_{2} are linearly independent for $t>0$.
2. 4 Using the above, find a general solution to

$$
t^{2} y^{\prime \prime}+t y^{\prime}+\left(t^{2}-\frac{1}{4}\right) y=t^{5 / 2}, \quad t>0
$$

3. 5 Find a general solution for

$$
t y^{\prime \prime}-(t+1) y^{\prime}+y=t^{2}
$$

provided that $y_{1}=e^{t}$ solves

$$
t y^{\prime \prime}-(t+1) y^{\prime}+y=0
$$

Hint: Start by finding a second linearly independent solution to the homogeneous equation, then apply Variation of Parameters.

