\qquad
Sections: 7.9, 5.1
Point Values in boxes.
Due: 1 June 2018

1. 2 Consider the initial value problem

$$
x^{\prime \prime}+4 x^{\prime}+8 x=g(t), \quad x(0)=0, x^{\prime}(0)=2 .
$$

Find $g(t)$ so that the solution $x(t)$ is $\pi / 2$-periodic. In particular, a graph of $x(t)$ should look like the following figure.

2. 3 Consider the system given by

$$
\begin{array}{rlr}
x^{\prime} & =x-10 y+e^{2 t}, & x(0)=3 \\
y^{\prime} & =x-5 y+\sin 2 t, & y(0)=7 .
\end{array}
$$

Convert the system into a second order initial value problem in y. Do not solve the initial value problem.
3. Applying the substitution

$$
\begin{equation*}
x=y^{\prime}+y \tag{1}
\end{equation*}
$$

to the symbolic system of equations

$$
\begin{array}{ll}
x^{\prime}=x-10 y+3 \delta(t-1), & x(0)=1 \\
y^{\prime}=x-y, & y(0)=1
\end{array}
$$

converts the system into the symbolic initial value problem

$$
\begin{equation*}
y^{\prime \prime}+9 y=3 \delta(t-1), \quad y(0)=1, y^{\prime}(0)=0 . \tag{2}
\end{equation*}
$$

(a) 3 Solve the initial value problem (2) for $y(t)$. Express your solution as a piecewise defined function.
(b) 2 Using the substitution (1), find $x(t)$ for $t \in(0,1)$ and $t \in(1, \infty)$.

