Name: \qquad
Sections: 1.1-1.3, Phase Line Point values in boxes.
15 May 2018

1. Consider the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=-y^{2}, \quad y(1)=2 . \tag{1}
\end{equation*}
$$

(a) 2 Verify $y(x)=\frac{1}{x+c}$, where c is an arbitrary constant, is a one-parameter family of solutions to $\frac{d y}{d x}=-y^{2}$.
(b) 2 Does Theorem 1 (Existence/Uniqueness) apply to the initial value problem (1)? Why, or why not?
(c) 2 Solve the initial value problem (1), i.e. find c so that $y(x)=\frac{1}{x+c}$ satisfies the initial data ${ }^{1}$.

[^0]2. 4 For each of the following equations, label the equilibria and classify each as a sink, source, or node on the phase line. Include direction arrows. Additionally, for each, predict the asymptotic behavior as $t \rightarrow \infty$ of the solution satisfying $y(0)=-0.5$.
(a) $\frac{d y}{d t}=-y^{2}$
(b) $\frac{d y}{d t}=1-y^{2}$

[^0]: ${ }^{1}$ The solution to an initial value problem is not a number, so your solution should not be of the form $c=7$ with a box around it. What type of thing is a solution to an intial value problem?

