\qquad
Section: 9.4
5 June 2018

1. 1 The vectors

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{c}
10 \\
0 \\
6
\end{array}\right]
$$

satisfy

$$
2 \mathbf{x}_{1}+4 \mathbf{x}_{2}-\mathbf{x}_{3}=\mathbf{0}
$$

The vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ are linearly independent/dependent on $(-\infty, \infty)$. (Circle one.)
2. 1 The vectors

$$
\mathbf{x}_{4}=\left[\begin{array}{c}
2 e^{t} \\
2
\end{array}\right], \mathbf{x}_{5}=\left[\begin{array}{c}
t e^{t} \\
t
\end{array}\right]
$$

satisfy

$$
t \mathbf{x}_{4}-2 \mathbf{x}_{5}=\mathbf{0} \text { for all } t
$$

The vectors $\mathbf{x}_{4}, \mathbf{x}_{5}$ are linearly independent/dependent on $(-\infty, \infty)$. (Circle one.)
3. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & -5 \\
1 & -1
\end{array}\right], \mathbf{x}_{1}=\left[\begin{array}{c}
\cos 2 t-2 \sin 2 t \\
\cos 2 t
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
\sin 2 t+2 \cos 2 t \\
\sin 2 t
\end{array}\right]
$$

and consider the equation

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{A x} . \tag{1}
\end{equation*}
$$

(a) 3 The vector function \mathbf{x}_{1} is a solution to (1), verify \mathbf{x}_{2} is also a solution to (1).
(b) 2 Verify $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$ is a fundamental solution set for (1).
(c) 1 Find a fundamental matrix for (1) and evaluate it at $t=0$, i.e., find $\mathbf{X}(0)$.
(d) 2 Find the solution to the initial value problem

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

You may find it useful to know that if $\mathbf{X}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible then $\mathbf{X}^{-1}=\frac{1}{|\mathbf{X}|}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

