\qquad
Sections: 4.6, 4.7
Point values in boxes.
23 May 2018

Variation of Parameters

If y_{1} and y_{2} are linearly independent solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, then a particular solution to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ is given by

$$
y_{p}(t)=y_{1}(t) \int \frac{-g(t) y_{2}(t)}{W\left[y_{1}, y_{2}\right](t)} d t+y_{2}(t) \int \frac{g(t) y_{1}(t)}{W\left[y_{1}, y_{2}\right](t)} d t .
$$

1. For $x>0$, consider the differential equation

$$
x y^{\prime \prime}-y^{\prime}+(1-x) y=\frac{\sin x}{2 x} .
$$

(a) 4 Both $y_{1}=e^{x}$ and $y_{2}=e^{-x}(2 x+1)$ are solutions to the associated homogeneous equation, show that they are linearly independent.
(b) 2 Set up the variation of parameters expression for the particular solution to the original inhomogeneous equation. DO NOT EVALUATE.

Reduction of Order

If $y_{1}(t)$ is a solution, not identically zero, to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ on I, then

$$
y_{2}(t)=y_{1}(t) \int \frac{e^{-\int p(t) d t}}{\left(y_{1}(t)\right)^{2}} d t
$$

is a second, linearly independent solution.
2. 4 Find the general solution to the equation

$$
2 t^{2} y^{\prime \prime}+t y^{\prime}-3 y=0
$$

Note that $y_{1}=t^{-1}$ is a solution to this equation.

