1. Assume $g(t)$ is piecewise continuous and of exponential order and consider the initial value problem

$$
y^{\prime \prime}+9 y=g(t), \quad y(0)=1, y^{\prime}(0)=6 .
$$

Find the solution. Express your solution in terms of a convolution.
2. Assume $g(t)$ is piecewise continuous and of exponential order and consider the initial value problem

$$
y^{\prime \prime}-3 y^{\prime}+2 y=g(t), \quad y(0)=1, y^{\prime}(0)=1 .
$$

(a) Find the solution. Express your solution in terms of a convolution.
(b) Express the convolution in (a) as an appropriate integral.
(c) If $g(t)=e^{t}$, evaluate the convolution.
3. Let $F(s)=\frac{5}{s^{2}-s-6}$.
(a) Use partial fractions to find the inverse Laplace transform $f(t)$.
(b) Use the convolution theorem to find the inverse Laplace transform $f(t)$.
(c) Compute the convolution integral to show your solutions are equivalent.
4. Compute the inverse Laplace transform of $F(s)=\frac{1}{\left(s^{2}+4\right)^{2}}$.

Note: $\sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]$ is a useful identity.

