1. Consider the mass-spring system given by the initial value problem

$$
\begin{equation*}
x^{\prime \prime}+2 x^{\prime}+5 x=0, \quad x(0)=0, x^{\prime}(0)=2 . \tag{1}
\end{equation*}
$$

(a) Find the solution to (1).
(b) Find the magnitude of the impulse needed to stop the motion of the system when it first returns to equilibrium at time t_{1}, i.e., find M so that the solution to the symbolic initial value problem

$$
x^{\prime \prime}+2 x^{\prime}+5 x=M \delta(t-\pi / 2),
$$

$$
x(0)=0, x^{\prime}(0)=2
$$

has the following graph.

You may find the following useful.

$$
\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta
$$

2. Find the solution to the symbolic initial value problem

$$
y^{\prime \prime}+2 \pi y^{\prime}+5 \pi^{2} y=4 \pi \delta(t-1), \quad x(0)=0, x^{\prime}(0)=2 \pi
$$

3. Use scratch paper, and your remaining time to investigate the following.
(a) For $n>0$, consider the initial value problem

$$
y^{\prime \prime}+y=n(1-u(t-1 / n)), \quad y(0)=y^{\prime}(0)=0 .
$$

Find the solution, $y_{n}(t)$, and express it as a piecewise defined function that depends on n.
(b) Evaluate

$$
\lim _{n \rightarrow \infty} y_{n}(t) .
$$

(c) Solve the initial value problem

$$
y^{\prime \prime}+y=\delta(t), \quad y(0)=y^{\prime}(0)=0 .
$$

(d) Solve the initial value problem

$$
y^{\prime \prime}+y=0, \quad y(0)=0, y^{\prime}(0)=1
$$

(e) What do you notice about the solutions to (b), (c), and (d)? Is it what you expected?

