In Section 9.8 we saw that if $\mathbf{X}(t)$ is a Fundamental Matrix for $\mathbf{x}^{\prime}=\mathbf{A x}$ then

$$
\begin{equation*}
e^{\mathbf{A t}}=\mathbf{X}(t) \mathbf{X}^{-1}(0) . \tag{1}
\end{equation*}
$$

For any $2 \times 2$ matrix $\mathbf{A}$, the matrix exponential $e^{\mathbf{A} t}$ can be computed according to the table below.

| Eigenvalues of A | $e^{\mathbf{A t}}$ |
| :---: | :---: |
| $r_{1}, r_{2}$ real and distinct | $e^{r_{1} t} \frac{1}{r_{1}-r_{2}}\left(\mathbf{A}-r_{2} \mathbf{I}\right)-e^{r_{2} t} \frac{1}{r_{1}-r_{2}}\left(\mathbf{A}-r_{1} \mathbf{I}\right)$ |
| $r$ real repeated twice | $e^{r t} \mathbf{I}+t e^{r t}(\mathbf{A}-r \mathbf{I})$ |
| $\alpha \pm i \beta$ complex conjugate pair | $e^{\alpha t} \cos (\beta t) \mathbf{I}+\frac{1}{\beta} e^{\alpha t} \sin (\beta t)(\mathbf{A}-\alpha \mathbf{I})$ |

1. Consider the equation $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$ with $\mathbf{A}=\left[\begin{array}{ll}5 & -3 \\ 4 & -2\end{array}\right]$.
(a) Compute $e^{\mathbf{A} t}$ using (1) above.
(b) Compute $e^{\mathbf{A} t}$ using the formula.
(c) Note, $e^{\mathbf{A} t}$ is unique, so your solutions should be the same.
2. Consider the equation $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$ with $\mathbf{A}=\left[\begin{array}{cc}-3 & -2 \\ 4 & 1\end{array}\right]$.
(a) Compute $e^{\mathbf{A} t}$ using (1).
(b) Compute $e^{\mathbf{A} t}$ using the formula.
(c) Solve the initial value problem $\mathbf{x}^{\prime}(t)=\mathbf{A x}(t), \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
3. Consider the equation $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$ with $\mathbf{A}=\left[\begin{array}{ll}1 & -1 \\ 4 & -3\end{array}\right]$.
(a) In Section $9.5 \# 35$ we saw that $\mathbf{A}$ had a repeated eigenvalue and found a solution making use of the idea of a generalized eigenvector. This was a non-trivial exercise.
(b) Compute $e^{\mathbf{A} t}$ using the formula.
