Sections: 1.1-1.2

1. Show $\phi(x) = \frac{\sin x + c}{x^2}$, where c is an arbitrary constant, is a one-parameter family of solutions to

$$x^2y' + 2xy = \cos x.$$

2. Find c so that $\phi(x) = \frac{\sin x + c}{x^2}$ solves the initial value problem $x^2y' + 2xy = \cos x, \qquad y(1) = 0.$

3. Show $y^2 + \cos(xy) - e^x = 7$ is an implicit solution to

$$y' = \frac{e^x + y\sin\left(xy\right)}{2y - x\sin\left(xy\right)}.$$

- 4. For each of the following initial value problems, determine if Theorem 1 implies that a unique solution exists.
 - (a) Yes / No: $y' = -\sqrt{y}$, y(2) = 1 (c) Yes / No: $xy' = \cos y$, y(0) = 1
 - (b) Yes / No: $y' = -\sqrt{y}$, y(2) = 0 (d) Yes / No: $xy' = \cos y$, y(2) = 0

5. A simplified hurricane wind intensity model is given by

$$\frac{dU}{dt} = U(1 - U^n)$$

where U is the nondimensional wind speed and n is a positive constant that measures how close the wind intensity can come to the maximum potential intensity.

For today we further simplify the model by letting n = 2 resulting in the equation

$$\frac{dU}{dt} = U(1 - U^2). \tag{1}$$

Verify that

$$U(t) = U_0 e^t \left(1 + U_0^2 (e^{2t} - 1) \right)^{-1/2}$$
(2)

solves equation (1) with initial condition $U(0) = U_0$. In other words,

- (a) verify (2) satisfies $U(0) = U_0$, and
- (b) verify that (2) satisfies (1).