1. Show $\phi(x)=\frac{\sin x+c}{x^{2}}$, where c is an arbitrary constant, is a one-parameter family of solutions to

$$
x^{2} y^{\prime}+2 x y=\cos x .
$$

2. Find c so that $\phi(x)=\frac{\sin x+c}{x^{2}}$ solves the initial value problem

$$
x^{2} y^{\prime}+2 x y=\cos x, \quad y(1)=0 .
$$

3. Show $y^{2}+\cos (x y)-e^{x}=7$ is an implicit solution to

$$
y^{\prime}=\frac{e^{x}+y \sin (x y)}{2 y-x \sin (x y)} .
$$

4. For each of the following initial value problems, determine if Theorem 1 implies that a unique solution exists.
(a) Yes / No: $y^{\prime}=-\sqrt{y}, \quad y(2)=1$
(c) Yes / No: $x y^{\prime}=\cos y, \quad y(0)=1$
(b) Yes / No: $y^{\prime}=-\sqrt{y}, \quad y(2)=0$
(d) Yes / No: $x y^{\prime}=\cos y, \quad y(2)=0$
5. A simplified hurricane wind intensity model is given by

$$
\frac{d U}{d t}=U\left(1-U^{n}\right)
$$

where U is the nondimensional wind speed and n is a positive constant that measures how close the wind intensity can come to the maximum potential intensity.
For today we further simplify the model by letting $n=2$ resulting in the equation

$$
\begin{equation*}
\frac{d U}{d t}=U\left(1-U^{2}\right) \tag{1}
\end{equation*}
$$

Verify that

$$
\begin{equation*}
U(t)=U_{0} e^{t}\left(1+U_{0}^{2}\left(e^{2 t}-1\right)\right)^{-1 / 2} \tag{2}
\end{equation*}
$$

solves equation (1) with initial condition $U(0)=U_{0}$. In other words,
(a) verify (2) satisfies $U(0)=U_{0}$, and
(b) verify that (2) satisfies (1).

