1. A rock contains two radioactive isotopes A and B, that belong to the same radioactive series; that is A decays into B, which then decays into stable atoms. Assume that the rate at which A decays into B is $40 e^{-10 t} \mathrm{~kg} / \mathrm{sec}$. Let $y(t)$ be the mass of B at time t . The rate of decay of B is proportional to the total mass of B present, i.e. $y^{\prime}=-k y$.
(a) Write a differential equation modeling the mass of B present at time t. Note, the amount of B is increasing as A decays and creates more B, but simultaneously decreasing as B decays. Assume the constant of proportionality in the decay of B is $k=2 / \mathrm{sec}$.
(b) Express your equation in standard linear form.
(c) Compute the integrating factor.
(d) Find a general solution.
(e) If the mass of B is initially 20 kg , find the mass $y(t)$ of B as a function of t for $t \geq 0$.
2. Consider the first order linear initial value problem

$$
y^{\prime}+\frac{y}{x-1}=\frac{5}{x^{2}-1}, \quad y(0)=1 .
$$

(a) Find an explicit solution to the initial value problem .
(b) On what interval is your solution unique?
3. For the following initial value problems, are the given solutions unique.
(a) The initial value problem $y^{\prime}=-\sqrt{y}, y(1)=0$ has solution $y(t)=\frac{1}{4}(x-1)^{2}$.
(b) The initial value problem $y^{\prime}+2 x y=x, y(0)=1$ has solution $y(x)=\frac{1}{2}\left(e^{-x^{2}}+1\right)$.

