Section: 2.6 and 3.2 (Kegs)

1. The magnetic field lines of a dipole (in the $x y$-plane) satisfy

$$
\frac{d y}{d x}=\frac{3 x y}{2 x^{2}-y^{2}} .
$$

(a) Sketch a direction field for this differential equation.
(b) Is this equation homogeneous?
(c) Find a general solution of this ODE.
(d) Sketch some solution curves on the graphic you made in part (a).
2. Consider the differential equation

$$
y^{\prime}+\frac{y}{x}=x^{2} y^{2}
$$

(a) Find a general solution.
(b) Find a solution $y(x)$ such that $y(1)=1$.
3. Consider a 100 L tank of pure water (imported from the Alps) into which a saline solution begins to flow at a constant rate of $5 \mathrm{~L} / \mathrm{min}$. The solution in the tank is well-mixed and flows out of the tank at $5 \mathrm{~L} / \mathrm{min}$. The concentration of the saline solution entering the tank is $0.5 \mathrm{~kg} / \mathrm{L}$.

(a) Letting $y(t)$ denote the mass of salt in the tank after t minutes, determine $y(t)$.
(b) At what time will the concentration of salt in the tank reach $0.1 \mathrm{~kg} / \mathrm{L}$?

