Method of Undetermined Coefficients

To find a particular solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=P_{m}(t) e^{r t}
$$

where $P_{m}(t)$ is a polynomial of degree m, use the form

$$
y_{p}(t)=t^{s}\left(A_{m} t^{m}+\cdots+A_{1} t+A_{0}\right) e^{r t} ;
$$

if r is not a root of the associated auxiliary equation, take $s=0$; if r is a simple root, take $s=1$; and if r is a double root, take $s=2$.
To find a particular solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=P_{m}(t) e^{\alpha t} \cos \beta t+Q_{n}(t) e^{\alpha t} \sin \beta t
$$

where $P_{m}(t)$ and $Q_{n}(t)$ are polynomials of degree m and n, respectively, use the form

$$
y_{p}(t)=t^{s}\left(A_{k} t^{k}+\cdots+A_{1} t+A_{0}\right) e^{\alpha t} \cos \beta t+t^{s}\left(B_{k} t^{k}+\cdots+B_{1} t+B_{0}\right) e^{\alpha t} \sin \beta t
$$

where k is the larger of m and n. If $\alpha+i \beta$ is not a root of the associated auxiliary equation, take $s=0$; if so take $s=1$.

1. Find the appropriate form using the Method of Undetermined Coefficients for a particular solution to the following. Do not solve for the unknown constants.
(a) $y^{\prime \prime}-4 y^{\prime}+4 y=t \sin 3 t$
(b) $y^{\prime \prime}-4 y^{\prime}+4 y=t e^{t}+3 e^{4 t}$
(c) $y^{\prime \prime}-y^{\prime}-6 y=e^{3 t}+7 t^{2}$
(d) $y^{\prime \prime}+9=\sin 3 t$
(e) $y^{\prime \prime}+9=e^{2 t} \cos 3 t$
2. Find a general solution for the following.
(a) $y^{\prime \prime}+y=4$
(b) $y^{\prime \prime}+y=4 t$
(c) $y^{\prime \prime}=4$
(d) $y^{\prime \prime}+6 y^{\prime}+8 y=16+6 e^{-2 t}$
(e) $y^{\prime \prime}+6 y^{\prime}+8 y=\cos 2 t$
