Variation of Parameters

If y_{1} and y_{2} are linearly independent solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, then a particular solution to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ is given by

$$
y_{p}(t)=y_{1}(t) \int \frac{-g(t) y_{2}(t)}{W\left[y_{1}, y_{2}\right](t)} d t+y_{2}(t) \int \frac{g(t) y_{1}(t)}{W\left[y_{1}, y_{2}\right](t)} d t
$$

1. We are interested in solving the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+9 y=\csc 3 t, \quad y(\pi / 6)=y^{\prime}(\pi / 6)=0 . \tag{1}
\end{equation*}
$$

(a) Find a general solution to the associated homogeneous equation, i.e $y^{\prime \prime}+9 y=0$.
(b) Find a particular solution to $y^{\prime \prime}+9 y=\csc 3 t$.
(c) Find a general solution to $y^{\prime \prime}+9 y=\csc 3 t$.
(d) Find the solution to the initial value problem (1).
2. Consider the equation

$$
y^{\prime \prime}+9 y=9 \sin 3 t .
$$

(a) Find a particular solution using Variation of Parameters. You may find the following trigonometric identities useful.

- $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
- $\sin 2 x=2 \sin x \cos x$
(b) Find a particular solution using the Method of Undetermined Coefficients.

