1. Use the definition to determine the Laplace transform of $f(t)= \begin{cases}t, & 0 \leq t<4 \\ e^{-t}, & 4<t\end{cases}$
2. 2 Use the provided table and linearity to determine the Laplace transform of the following functions.
(a) $f(t)=4 t^{2}-7 e^{2 t} \cos 3 t$
(b) $g(t)=6+t^{8} e^{-3 t}$
(c) $h(t)=5 t e^{2 t} \sin 3 t$
(d) $j(t)=\cos ^{2} b t$
[Hint: $\cos ^{2} x=(1+\cos 2 x) / 2$.]
3. For each of the following choose all that apply; the function is not piecewise continuous on $[0, \infty)$ (NPC), the function is not of exponential order (NEO), and/or the function has a Laplace transform (LT).
(a) NPC / NEO / LT : $f(t)=\tan t$
(b) NPC / NEO / LT : $f(t)=e^{\sin t}$
(c) NPC / NEO / LT $: f(t)=14 e^{t^{2}+7}$
(d) NPC / NEO / LT : $f(t)= \begin{cases}4 e^{3 t}, & 0<t<2 \\ 12 e^{t}, & 2<t\end{cases}$
4. The inverse Laplace transform is defined as you would expect it to be ${ }^{1}$. For example, since $\mathscr{L}\{\sin 3 t\}=\frac{3}{s^{2}+9}$, we have $\mathscr{L}^{-1}\left\{\frac{3}{s^{2}+9}\right\}=\sin 3 t$. Find the inverse Laplace transform of the following.
(a) $F(s)=\frac{s}{s^{2}+4}$
(b) $G(s)=\frac{8 s}{s^{2}+4}$
(c) $H(s)=\frac{6}{s^{4}}$
(d) $K(s)=\frac{1}{s^{4}}$
(e) $W(s)=\frac{6-7 s}{s^{2}+9}$
[Hint: separate the fraction.]
[^0]
[^0]: ${ }^{1}$ There are some technical complications we will address next week, but for now we will ignore them and assume it works as we expect.

