Sections: 7.2,7.3

1. Use the definition to determine the Laplace transform of $f(t) = \begin{cases} t, & 0 \le t < 4 \\ e^{-t}, & 4 < t \end{cases}$

2. 2 Use the provided table and linearity to determine the Laplace transform of the following functions.

(a) $f(t) = 4t^2 - 7e^{2t}\cos 3t$ (b) $g(t) = 6 + t^8 e^{-3t}$

(c) $h(t) = 5te^{2t} \sin 3t$ (d) $j(t) = \cos^2 bt$

[HINT: $\cos^2 x = (1 + \cos 2x)/2$.]

- 3. For each of the following choose all that apply; the function is not piecewise continuous on $[0, \infty)$ (**NPC**), the function is not of exponential order (**NEO**), and/or the function has a Laplace transform (**LT**).
 - (a) **NPC / NEO / LT :** $f(t) = \tan t$
 - (b) NPC / NEO / LT : $f(t) = e^{\sin t}$
 - (c) **NPC / NEO / LT :** $f(t) = 14e^{t^2+7}$
 - (d) **NPC / NEO / LT :** $f(t) = \begin{cases} 4e^{3t}, & 0 < t < 2\\ 12e^t, & 2 < t \end{cases}$
- 4. The inverse Laplace transform is defined as you would expect it to be¹. For example, since $\mathscr{L}{\sin 3t} = \frac{3}{s^2 + 9}$, we have $\mathscr{L}^{-1}\left\{\frac{3}{s^2 + 9}\right\} = \sin 3t$. Find the inverse Laplace transform of the following.
 - (a) $F(s) = \frac{s}{s^2 + 4}$

(b)
$$G(s) = \frac{8s}{s^2 + 4}$$

(c)
$$H(s) = \frac{6}{s^4}$$

(d)
$$K(s) = \frac{1}{s^4}$$

(e) $W(s) = \frac{6-7s}{s^2+9}$

 $^{^{1}}$ There are some technical complications we will address next week, but for now we will ignore them and assume it works as we expect.