Math 274 In-Class

Sections: 7.4

1. Determine the inverse Laplace transform of the following.

(a)
$$F(s) = \frac{4}{s+3}$$
 (d) $J(s) = \frac{2}{(s-3)^4}$

(b)
$$G(s) = \frac{3}{2s+1}$$
 (e) $K(s) = \frac{2}{s^2+3}$

(c)
$$H(s) = \frac{2}{3-s}$$
 (f) $M(s) = \frac{2s}{s^2+3}$

(g)
$$N(s) = \frac{2s+2}{s^2+3}$$

(h)
$$P(s) = \frac{6s}{s^2 + 4s + 6}$$

(i)
$$Q(s) = \frac{4s+2}{s^3+2s^2}$$

2. Consider the initial value problem

$$y'' + 4y = 8t - 4,$$
 $y(0) = 1, y'(0) = 0.$ (1)

(a) Applying the Laplace transform to the initial value problem (1) gives the following

$$[s^{2}Y(s) - s] + 4Y(s) = \frac{8}{s^{2}} - \frac{4}{s}.$$
(2)

Solve equation (2) above for Y(s) and then determine $y(t) = \mathscr{L}^{-1}{Y(s)}$ which is the solution to the initial value problem.

⁽b) Use methods from Chapter 4 to solve the the initial value problem (1).