1. Determine the inverse Laplace transform of the following.
(a) $F(s)=\frac{4}{s+3}$
(d) $J(s)=\frac{2}{(s-3)^{4}}$
(b) $G(s)=\frac{3}{2 s+1}$
(e) $K(s)=\frac{2}{s^{2}+3}$
(c) $H(s)=\frac{2}{3-s}$
(f) $M(s)=\frac{2 s}{s^{2}+3}$
(g) $N(s)=\frac{2 s+2}{s^{2}+3}$
(h) $P(s)=\frac{6 s}{s^{2}+4 s+6}$
(i) $Q(s)=\frac{4 s+2}{s^{3}+2 s^{2}}$
2. Consider the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+4 y=8 t-4, \quad y(0)=1, y^{\prime}(0)=0 . \tag{1}
\end{equation*}
$$

(a) Applying the Laplace transform to the initial value problem (1) gives the following

$$
\begin{equation*}
\left[s^{2} Y(s)-s\right]+4 Y(s)=\frac{8}{s^{2}}-\frac{4}{s} \tag{2}
\end{equation*}
$$

Solve equation (2) above for $Y(s)$ and then determine $y(t)=\mathscr{L}^{-1}\{Y(s)\}$ which is the solution to the initial value problem.
(b) Use methods from Chapter 4 to solve the the initial value problem (1).

