1. Apply the Laplace transform to the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}=7, \quad y(0)=1, y^{\prime}(0)=-3
$$

to express $Y(s)=\mathscr{L}\{y(t)\}$ in the form $Y(s)=\frac{P(s)}{Q(s)}$; for example, (1) below is of this form. Do not find the inverse Laplace transform.
2. Applying the Laplace transform to the initial value problem

$$
y^{\prime \prime}-6 y^{\prime}+9 y=e^{2 t}, \quad y(0)=3, y^{\prime}(0)=4
$$

gives the following

$$
\begin{equation*}
Y(s)=\frac{3 s^{2}-20 s+29}{(s-2)\left(s^{2}-6 s+9\right)} \tag{1}
\end{equation*}
$$

Determine $y(t)=\mathscr{L}^{-1}\{Y(s)\}$, the solution to the given initial value problem.
3. Use the method of Laplace Transforms to solve the following initial value problems.
(a) $y^{\prime \prime}+4 y=4 t^{2}-4 t+10, \quad y(0)=0, y^{\prime}(0)=3$
(b) $y^{\prime \prime}-4 y^{\prime}+5 y=4 e^{3 t}, \quad y(0)=2, y^{\prime}(0)=7$

