Math 274 In-Class

Section: 7.5

1. Apply the Laplace transform to the initial value problem

$$y'' + 3y' = 7,$$
 $y(0) = 1, y'(0) = -3$

to express $Y(s) = \mathscr{L}{y(t)}$ in the form $Y(s) = \frac{P(s)}{Q(s)}$; for example, (1) below is of this form. Do not find the inverse Laplace transform.

2. Applying the Laplace transform to the initial value problem

$$y'' - 6y' + 9y = e^{2t},$$
 $y(0) = 3, y'(0) = 4$

gives the following

$$Y(s) = \frac{3s^2 - 20s + 29}{(s-2)(s^2 - 6s + 9)}.$$
(1)

Determine $y(t) = \mathscr{L}^{-1}\{Y(s)\}$, the solution to the given initial value problem.

- 3. Use the method of Laplace Transforms to solve the following initial value problems.
 - (a) $y'' + 4y = 4t^2 4t + 10$, y(0) = 0, y'(0) = 3

(b)
$$y'' - 4y' + 5y = 4e^{3t}$$
, $y(0) = 2, y'(0) = 7$