Section: 7.6

1. Express the following functions using step functions and determine their Laplace transforms.
(a) $f(t)= \begin{cases}0, & t<1 \\ 1, & 1<t<2 \\ 2, & 2<t\end{cases}$
(b) $g(t)= \begin{cases}t, & t<\pi \\ e^{3 t} \cos 2 t, & \pi<t\end{cases}$
2. Determine the inverse Laplace transform for the following.
(a) $H(s)=\frac{1}{s}+\frac{e^{-2 s}}{s^{2}}+\frac{e^{-4 s}}{s^{3}}$
(b) $K(s)=\frac{8 e^{4-2 s}}{(s-2)\left(s^{2}+4\right)}$
3. Applying the Laplace transform to the initial value problem

$$
y^{\prime \prime}+4 y=f(t), \quad y(0)=0, y^{\prime}(0)=0
$$

with

$$
f(t)= \begin{cases}10 e^{t}, & t<1 \\ -8 e^{2 t}, & 1<2<t \\ 0, & 2<t\end{cases}
$$

gives

$$
Y(s)=\frac{10}{(s-1)\left(s^{2}+4\right)}+e^{-s}\left[\frac{-8 e^{2}}{(s-2)\left(s^{2}+4\right)}-\frac{10 e}{(s-1)\left(s^{2}+4\right)}\right]+e^{-2 s}\left[\frac{8 e^{4}}{(s-2)\left(s^{2}+4\right)}\right] .
$$

Determine $y(t)=\mathscr{L}^{-1}\{Y(s)\}$, the solution to the given initial value problem.
You should reference the partial fraction decomposition in 2(b). Additionally, a routine exercise shows $\frac{10}{(s-1)\left(s^{2}+4\right)}=\frac{2}{s-1}-\frac{2 s+2}{s^{2}+4}$.

Exercise: Using your favorite piece of technology, generate a picture of the graph of y. It should look something like this.

