1. Compute the Laplace transform of the periodic function $f(t)$ given by the graph below.

2. Let $f(t)=e^{t}, 0<t<1$ and extend periodically to a function defined on the positive reals. Apply the Laplace transform and solve for $Y(s)$ in the initial value problem

$$
y^{\prime \prime}-y=f(t), \quad y(0)=y^{\prime}(0)=0 .
$$

3. Compute the convolution $f(t) * g(t)$ for the following:
(a) $f(1)=1, g(t)=t^{2}$;
(b) $f(t)=t, g(t)=t$;
(c) $f(t)=1 * 1, g(t)=t$;
(d) $f(t)=t, g(t)=e^{t}$.
4. Verify that $\mathscr{L}\{f * g\}(s)=F(s) G(s)$ for cases (a) and (d) from the preceding problem.
