1. (a) Show that the following vectors are linearly dependent

$$
\left\{\left[\begin{array}{c}
1 \\
4 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{c}
7 \\
10 \\
-4 \\
-1
\end{array}\right],\left[\begin{array}{c}
-2 \\
1 \\
5 \\
-4
\end{array}\right]\right\}
$$

(b) Are the following vectors linearly independent?

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right],\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right],\left[\begin{array}{l}
10 \\
11 \\
12
\end{array}\right]\right\}
$$

(c) Are the following vectors linearly independent on $(-\infty, \infty)$?

$$
\left\{\left[\begin{array}{c}
t e^{-t} \\
e^{-t}
\end{array}\right],\left[\begin{array}{c}
e^{-t} \\
e^{-t}
\end{array}\right]\right\}
$$

2. On which interval does the following initial value problem have a unique solution?

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
\tan t & 0 \\
t & \ln t
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
e^{t} \\
1 / t
\end{array}\right], \quad\left[\begin{array}{l}
x_{1}(\pi / 4) \\
x_{2}(\pi / 4)
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

3. (a) Let $\mathbf{X}(t)$ be a fundamental matrix for $\mathbf{x}^{\prime}=\mathbf{A x}$. Show that $\mathbf{x}(t)=\mathbf{X}(t) \mathbf{X}^{-1}\left(t_{0}\right) \mathbf{x}_{0}$ is a solution to the ivp given by the initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$.
(b) Verify $\mathbf{X}(t)$ is a fundamental matrix and solve the ivp.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{c}
3 \\
-1
\end{array}\right], \quad \mathbf{X}(t)=\left[\begin{array}{cc}
e^{-t} & e^{5 t} \\
-e^{-t} & e^{5 t}
\end{array}\right]
$$

