1. (a) Verify that $\mathbf{u}_{1}=\left[\begin{array}{c}2+\sqrt{5} \\ 1\end{array}\right]$ is an eigenvector for $A=\left[\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right]$.
(b) Determine all eigenvectors for the matrix A.
2. Is the Matrix $T=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 6 & 5\end{array}\right]$ symmetric?
3. The following describes multiplication by matrices L and R on real 2 -vectors. Describe the eigenvalues/vectors for L and R.

4. Solve the ivp:

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
3 & 7 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right], \quad\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
5 \\
3
\end{array}\right]
$$

5. Given that $\mathbf{x}_{p}(t)=\left[\begin{array}{c}-t^{-1} / 2 \\ t^{-1}\end{array}\right]$ is a particular solution, describe the general solution to the system $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{f}(t)$, where $\mathbf{A}=\left[\begin{array}{ll}8 & -4 \\ 4 & -2\end{array}\right]$ and $\mathbf{f}(t)=\left[\begin{array}{c}t^{-2} / 2 \\ t^{-2}\end{array}\right]$
