1. (a) Write the following second order equation as a system of first order equations: $y^{\prime \prime}+3 y^{\prime}-y=0$.
(b) Write the following second order equation as a system of first order equations: $y^{\prime \prime}+3 y=e^{t}$.
(c) Write the following third order equation as a system of first order equations: $y^{\prime \prime \prime}+2 y^{\prime \prime}-2 y=0$.
(d) Write the coupled system in matrix notation

$$
\begin{aligned}
& x^{\prime \prime}+3 x-y=0 \\
& y^{\prime \prime}+2 y-2 x=0
\end{aligned}
$$

2. Let M be the 3×3 matrix

$$
M=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(a) Compute the determinant of M.
(b) Determine the inverse of M. Verify $M^{-1} M=I$.
(c) Solve the system of linear equations:

$$
\begin{aligned}
b+c & =5 \\
2 b+c & =6 \\
a+b+c & =7
\end{aligned}
$$

3. Find the inverse of the 4×4 matrix
$\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 3 & 3 & 3\end{array}\right]$
4. (a) Find the equation of the line passing through the points $(2,4)$ and $(5,13)$.
(b) For $t>0$, write the following function in terms of step functions

$$
f(t)=\left\{\begin{aligned}
t, & t<2 \\
1 / 2, & 2<t<3 \\
e^{t-2}, & 3<t
\end{aligned}\right.
$$

(c) Compute $\mathscr{L}\{f(t)\}$, for $f(t)$ as above.
(d) For $t>0$, let $g(t)$ be the periodic function of period 2 given on a fundamental period by

$$
g(t)=9-e^{t}, 0<t<2 .
$$

Compute $\mathscr{L}\{g(t)\}$.

