1. (10 pts total) Regarding Exercise 23 on page 56:

(a) (1 pt) Because we are focusing on a single population (states in the US that increased the speed limit in 1996 from 55mph), then of the t-tools presented as choices, a 1-sample t tool is appropriate.

(b) (1 pt) The Appendix presents side-by-side boxplots that compare the percent change in fatalities between the 32 American states that increased their speed limit from 55mph in 1996 to the 18 states that did not. The boxplots show a slight decrease in the median percent change in fatalities in the states that increased the speed limit compared to those that did not. This change looks to be small compared to the spread in the data, so I doubt that this decrease is statistically significant.

(c) (4 pts total) The 6 steps of the hypothesis test of whether the percent of fatalities increased just among the states that increased the speed limit from 55mph are:

i. (1 pt) The statistical hypotheses regard \(\mu \), the true mean percent change in fatalities just among the states that increase the speed limit from 55mph:

\[
H_0 : \mu = 0 \\
H_a : \mu > 0
\]

ii. (2 pts) Assumptions:

- Other states or other countries may be keen to see how fatalities changed in these 32 states to help decide whether to increase their speed limits. For this population of all states or countries, these 32 states are not a RS: they are all American states and the speed limits were changed in a single year, 1996. One would also expect that rural states like Montana, Idaho, Wyoming, and Washington would have more similar traffic fatalities as opposed to more densely populated states with many urban centers like California, New York and Florida.
- The sample size of \(n = 32 \geq 30 \) states is large enough for us to use the t-test to get a reliable CI.

iii, iv. and v (1 pt) The two-sided 90% CI is [-1.9% 2.9%] for the true mean percent change in fatalities just among the states that increased the speed limit from 55mph. See the Appendix for details. Because 0 is in the 90% two-sided CI, we FAIL TO REJECT \(H_0 \).

(d) Conclusion: The evidence fails to suggest that increasing the speed limit is associated with an increase in the percent of traffic fatalities. At 90% confidence, the true percent change in fatalities is between -1.9% and 2.9% after an increase in the speed limit from 55mph.

(e) Scope of inference: Because the 32 states in our data set were all from the United States (and not randomly selected from states or countries around the planet), it is unclear what population of states or countries that the results from these data can be generalized to. These results were from an observational study of the states that chose to increase their speed limits in 1996. Hence these data only failed to show an association between increasing speed limits and an increase in fatalities.

2. (10 pts total) Regarding Exercise 22 on page 55:

(a) (1 pt) The Appendix presents side-by-side boxplots that compare the 4 component test scores of the AFQT. The boxplots suggest a very large median “word knowledge” score compared to the median “math knowledge” score. In fact, the 25th percentile (i.e., 1st quartile) of the word scores is larger than the 75th percentile (i.e., 3rd quartile) of the math scores!

(b) (1 pt) To compare the mean “word knowledge” scores to the mean “math knowledge” scores, a t-test is more appropriate than a z-test because we have no knowledge regarding the SD of the word scores (\(\sigma_{\text{word}} \)), the SD of the math scores (\(\sigma_{\text{math}} \)), or of the SD of the difference (\(\sigma_{\text{word-math}} \)). We will estimate \(\sigma_{\text{word-math}} \) from the data.
(c) (1 pt) To compare the mean “word knowledge” scores to the mean “math knowledge” scores, a 2-sample paired t-test is appropriate because we have (paired) word and math scores for each individual in the data set.

(d) and (e) (4 pts total) The 6 steps of the hypothesis test of whether young adults’ math knowledge is less than their word knowledge on the average:

i. (1 pt) The **statistical hypotheses** regard μ_{word} and μ_{math}, the true mean scores for the word and math tests respectively:

$$H_0: \mu_{\text{word}} - \mu_{\text{math}} = 0$$

$$H_a: \mu_{\text{word}} - \mu_{\text{math}} > 0$$

ii. (2 pts) **Assumptions:**

- The problem states that we have a RS of American males and a RS of American females between 16 and 24 years old in 1981. Because there is roughly a 50-50 split of males and females in the American population, putting these two RSs together as we do will not over-represent males or females in the sample compared to the population. We will assume that we have a RS of young Americans between 16 and 24 years old in 1981.
- Each American has word and math scores, so clearly the word scores are not independent of the math scores.
- The sample size of $n = 2584 \geq 30$ Americans is large enough for us to use the t-test without having to assume normality of the differences in word and math scores.

iii. iv. and v. (1 pt) The sample mean word score is 12.4 points larger than the mean math score. The test statistic value of -114.7 (see the Appendix for details) means that the mean difference of 12.4 is 114.7 SEs away from the hypothesized difference in means $\mu_{\text{word}} - \mu_{\text{math}} = 0$ presumed by H_0. This is a huge disparity between the data and H_0. The associated p-value $< 2.2 \times 10^{-16} < \alpha = 0.01$, so we **REJECT** H_0.

(f) **Conclusion:** The evidence suggests that young Americans’ scores on the word knowledge portion of the AFQT is at least 12 points larger (at 99% confidence) than the math knowledge portion of the AFQT (p-value $< 2.2 \times 10^{-16}$).

(g) **Scope of inference:** As your book suggests, if these young adults are a RS from all Americans in 1981, then we conclude that, at 99% confidence, the population of all young Americans in 1981 tend to score at least 12 points higher, on average, on word knowledge compared to math knowledge. This was an observational study, so we make no claims that being a young American caused this disparity in test scores. In fact, I would guess that this result for young Americans in 1981 is similar to word and math knowledge of the general American population today; however, it would be a stretch to rely only on these data to support that guess.

3. (5 pts total)

(a) (1 pt) Even though the boxplot of the “word knowledge” scores (see Appendix) shows left skew with some small outliers, this does not suggest that the t-test we applied is not appropriate because of the large number of individuals in the sample.

(b) (1 pt) Graphical analyses (see Appendix) suggest that the AFQT scores are not normal. A log-transform of the AFQT scores was investigated. A boxplot of the log-transformed data still indicate severe left skew which suggests that the log-transformed data are still not normal. This was to expected: log-transforms tend to be appropriate for right-skewed data where the variance increases as the mean does.

(c) (1 pt) A Box Cox transform of the AFQT word scores was investigated (see the Appendix). For any transform of the form $Y = X^\lambda$ where X is an AFQT word score, a 95% CI for λ suggested that $\lambda = 2.25$.

(d) (2 pts) The data were transformed as suggested by Box Cox: $Y = X^{2.25}$ where X is an AFQT word score. Several plots of these data, including a normal probability plot and a boxplot, are presented in the Appendix. The Box Cox transformed “word knowledge” scores DO look less skewed but still not normal!
Appendix

In this first figure, the boxplot in the pane on the left compares the percent change in fatalities between the American states that increased their speed limit from 55mph in 1996 to the states that did not. The boxplot in the pane on the right compares the scores for the 4 component tests of the military’s AFQT required of all recruits.

The panes of the next figure assess normality of the AFQT word scores. The severe left skew indicates that the data are not normal.

A log-transform of the AFQT scores was investigated. Severe left skew indicates that the log-transformed data are still not normal.
A Box Cox transform of the AFQT word scores was investigated.

The panes of the next figure assess normality of the Box-Cox transformed AFQT word scores, \((\text{word scores})^{2.25}\). Although the transformed scores are less severely left skewed, they still do not appear normal.
R-code and R-output

###
PROBLEM 1
library(Sleuth3)
d=ex0222

Plot the data
boxplot(d$Math,d$Word,d$Arith,d$Parag,
 names=c("math","word","arithmetic","paragraph"),ylab="score",
 main="Results from AFQT")

Data analysis
t.test(s[s$SpeedLimit=="Inc",]$PctChange,conf.level=.9)
##
One Sample t-test
##
##data: s[s$SpeedLimit == "Inc",]$PctChange
##t = 0.345, df = 31, p-value = 0.7324
##alternative hypothesis: true mean is not equal to 0
##90 percent confidence interval:
-1.932586 2.920086
##sample estimates:
mean of x
0.49375

###
PROBLEM 2
d=ex0222

Plot the data
boxplot(d$Math,d$Word,d$Arith,d$Parag,
 names=c("math","word","arithmetic","paragraph"),ylab="score",
 main="Results from AFQT")

Data analysis
t.test(d$Math,d$Word,paired=T,alternative="less",conf.level=0.99)
Paired t-test

data: d$Math and d$Word
t = -114.687, df = 2583, p-value < 2.2e-16
alternative hypothesis: true difference in means is less than 0
99 percent confidence interval:
 -Inf -12.11056
mean of the differences
 -12.36146

Graphically checking for normality of the word scores
par(mfrow = c(1,3)) # Make three columns in the figure window
hist(d$Word,freq=FALSE,main="Density Plot of AFQT word scores",xlab="word scores")
lines(density(d$Word))
boxplot(d$Word,main="Boxplot of AFQT word scores",ylab="word scores")
qqnorm(d$Word,main="Normal Plot of AFQT word scores",ylab="Volumeword scores")
qqline(d$Word)

A quantitative test for normality: If r < r.critical = 0.976 => non-normal!
xy=qqnorm(d$Word)
cor(xyy,xyx)
[1] 0.9525448

Checking a log-transform of data
boxplot(log(d$Math),log(d$Word),log(d$Arith),log(d$Parag),
 names=c("math","word","arithmetic","paragraph"),xlab = "AFQT categories",
 ylab="log(score)",main="Results from AFQT")

Box-Cox transform of the word scores
par(mfrow = c(1,1))
library(MASS)
boxcox(d$Word[d$Word>0]~1,lambda=seq(1,3,.1))
Word.new = d$Word^2.25

Box-Cox successful? Assessing normality of the transformed word scores
par(mfrow = c(1,3)) # Make three columns in the figure window
hist(Word.new,freq=FALSE,main="Density of (word scores)^2.25",xlab="(word scores)^2.25")
lines(density(Word.new))
boxplot(Word.new,main="Boxplot of (word scores)^2.25",ylab="(word scores)^2.25")
qqnorm(Word.new,main="Normal Plot (word scores)^2.25",ylab="(word scores)^2.25")
qqline(Word.new)

Correlation test: If r < r.critical = 0.976 => non-normal!
xy=qqnorm(Word.new)
cor(xyy,xyx)
[1] 0.9753841