
Grading the Professor
Group Names:

Due: Monday, April 23 (in class)

Grading the Professor

Many college courses conclude by giving students the opportunity to evaluate the course and the instructor
“anonymously”. However, the use of these student evaluations as an indicator of course quality and teaching
effectiveness is often criticized because these measures may reflect the influence of non-teaching related
characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom:
instructors’ pulchritude and putative pedagogical productivity” (Hamermesh and Parker, 2005) found
that instructors who are viewed to be better looking end to receive higher instructional ratings (Daniel
S. Hamermesh, Amy Parker, Beauty in the classroom: instructors pulchritude and putative pedagogical
productivity, Economics of Education Review, Volume 24, Issue 4, August 2005, Pages 369-376).

In this lab we will analyze the data from this study in order to learn what goes into a positive professor
evaluation.

Data

The data were gathered from end of semester student evaluations for a large sample of professors from the
University of Texas at Austin. In addition, six students rated the professors’ physical appearance. The result
is a data frame where each row contains a different course and columns represent variables about the course
and its associated professors.
evals <- read.csv("evals.csv", header = TRUE)

variable description
score average professor evaluation score: (1)

very unsatisfactory - (5) excellent

rank rank of professor: teaching, tenure
track, tenured

ethnicity ethnicity of professor: not minority,
minority

gender gender of professor: female, male

language language of school where professor
received education: English or
non-English

age age of professor

cls_perc_eval percent of students in class who
completed evaluation

cls_did_eval number of students in class who
completed evaluation

cls_students total number of students in class
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variable description
cls_level class level: lower, upper

cls_profs number of professors teaching sections
in course in sample: single, multiple

cls_credits number of credits of class: one credit
(lab, PE, etc.), multi credit

bty_f1lower beauty rating of professor from lower
level female: (1) lowest - (10) highest

bty_f1upper beauty rating of professor from upper
level female: (1) lowest - (10) highest

bty_f2upper beauty rating of professor from
second upper level female: (1) lowest -
(10) highest

bty_m1lower beauty rating of professor from lower
level male: (1) lowest - (10) highest

bty_m1upper beauty rating of professor from upper
level male: (1) lowest - (10) highest

bty_m2upper beauty rating of professor from
second upper level male: (1) lowest -
(10) highest

bty_avg average beauty rating of professor

pic_outfit outfit of professor in picture: not
formal, formal

pic_color color of professor’s picture: color,
black & white

Exploring the Data

1. Is this an observational study or an experiment? The original research question posed
in the paper is whether beauty leads directly to differences in course evaluations. Given
the study design, is it possible to answer this question as it is phrased? If not, rephrase
the question.
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2. Based on the plot below, describe the distribution of evaluation scores. Is the distribution
skewed? What does that tell you about how students rate courses? Is this what you
expected to see? Why, or why not?

hist(evals$score, xlab = "Evaluation Scores", main = "", nclass = 25)
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Simple Linear Regression

The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more
favorably. Let’s create a scatterplot to see if this appears to be the case:
plot(jitter(evals$score) ~ evals$bty_avg, xlab = "Average Beauty Score", ylab = "Evaluation Score")
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3. What relationship do you see in the scatterplot above?

Let’s see if the apparent trend in the plot is something more than natural variation. Fit the linear model
called m_bty to predict average professor score by average beauty rating.

m_bty <- lm(score ~ bty_avg, data = evals)
summary(m_bty)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88033795 0.07614297 50.961212 1.561043e-191
## bty_avg 0.06663704 0.01629115 4.090382 5.082731e-05

Now, we can add this regression line the scatterplot using abline(m_bty).

plot(jitter(evals$score) ~ evals$bty_avg, xlab = "Average Beauty Score", ylab = "Evaluation Score")
abline(m_bty)
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4. Write out the estimated equation for the linear model and interpret the slope.

5. Is average beauty score a “statistically significant”" predictor? Does it appear to be a
practically significant predictor? (hint: we describe predictors as “practically significant”
if they have a “large” estimated effect)

5



6. Use diagnostic plots and critical thinking to evaluate whether the conditions of simple
linear regression are reasonably satisfied. Provide plots and comments for each one.

par(mfrow = c(2, 2))
plot(m_bty)
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• Independence:

• Normality of Residuals:

• Constant Variance:

• Linear Relationship:

• No Influential Observations:

• No Multicollinearity:
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Multiple Linear Regression

The data set contains several variables on the beauty score of the professor: individual ratings from each of
the six students who were asked to score the physical appearance of the professors and the average of these
six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.

plot(evals$bty_avg ~ evals$bty_f1lower, xlab = "Lower Level Beauty Rating", ylab = "Average Beauty Score")
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cor(evals$bty_avg, evals$bty_f1lower)

## [1] 0.8439112

As expected the relationship is quite strong - after all, the average score is calculated using the individual
scores. We can actually take a look at the relationships between all beauty variables (columns 13 through 19)
by making a scatterplot matrix.
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library(psych)
pairs.panels(evals[,13:19], ellipses = FALSE)
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7. What statistical term do we use to describe when there are “large” correlations between
explanatory variables?

The Search for the Best Model

We will start with a full model that predicts professor score based on all of the available quantitative predictors:
age, proportion of students that filled out evaluations, the number of students that did the evaluation, class
size, and all 7 of the available beauty ratings.

Let’s run the model.
m_full <- lm(score ~ age + cls_perc_eval + cls_did_eval + cls_students + bty_f1lower +

bty_f1upper + bty_f2upper + bty_m1lower + bty_m1upper + bty_m2upper + bty_avg,
data = evals)

summary(m_full)

##
## Call:
## lm(formula = score ~ age + cls_perc_eval + cls_did_eval + cls_students +
## bty_f1lower + bty_f1upper + bty_f2upper + bty_m1lower + bty_m1upper +

8



## bty_m2upper + bty_avg, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9130 -0.3466 0.1252 0.3938 1.1157
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.668826 0.240403 15.261 <2e-16 ***
## age -0.002010 0.002971 -0.677 0.4990
## cls_perc_eval 0.004479 0.002224 2.014 0.0446 *
## cls_did_eval 0.002321 0.003235 0.717 0.4735
## cls_students -0.000801 0.002022 -0.396 0.6922
## bty_f1lower 6.247973 15.764776 0.396 0.6921
## bty_f1upper 6.271251 15.760392 0.398 0.6909
## bty_f2upper 6.239297 15.761817 0.396 0.6924
## bty_m1lower 6.208149 15.761460 0.394 0.6939
## bty_m1upper 6.250523 15.762688 0.397 0.6919
## bty_m2upper 6.244747 15.758114 0.396 0.6921
## bty_avg -37.421076 94.572327 -0.396 0.6925
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5291 on 451 degrees of freedom
## Multiple R-squared: 0.07622, Adjusted R-squared: 0.05369
## F-statistic: 3.383 on 11 and 451 DF, p-value: 0.0001624

8. What do you notice about the standard errors for the beauty variables?

When we believe that the explanatory variables are highly correlated with each other, the standard errors
are inflated. We can actually measure how much each of the standard errors are inflated because of
multicollinearity with other variables in the model, using what are called variance inflation factors (or VIFs).
VIFs provide a way to assess the multicollinearity in the MLR model that is caused by including specific
explanatory variables. The amount of information that is shared between a single explanatory variable and
the others can be found by regressing that variable on the others and calculating the R2 for that model.

The easy way to obtain VIFs is using the vif function from the car package (Fox, 2003). Run the following
code!
library(car)
vif(m_full) ## VIFs

## age cls_perc_eval cls_did_eval cls_students bty_f1lower
## 1.400105e+00 2.291530e+00 3.501024e+01 3.803838e+01 1.440490e+06
## bty_f1upper bty_f2upper bty_m1lower bty_m1upper bty_m2upper
## 1.534151e+06 1.670230e+06 1.098928e+06 1.826803e+06 1.017048e+06
## bty_avg
## 3.443876e+07
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Basically, large VIFs are bad, with the rule of thumb that values over 5 or 10 are considered “large” values
indicating high multicollinearity in the model for that particular variable. We use this scale to determine
if multicollinearity is a problem for a variable of interest.
sqrt(vif(m_full)) ## square root of VIFs

## age cls_perc_eval cls_did_eval cls_students bty_f1lower
## 1.183260 1.513780 5.916945 6.167527 1200.203991
## bty_f1upper bty_f2upper bty_m1lower bty_m1upper bty_m2upper
## 1238.608524 1292.373932 1048.297773 1351.592807 1008.488006
## bty_avg
## 5868.454387

If we take the square root of the VIF numbers next each variable, we can interpret these numbers as “the
number of times larger the standard error for the slope for that variable is, due to collinearity with other
variables in the model.”

9. Based on the above VIF output, which variables have “large” multicollinearity problems?

Having more than one of the beauty variables in the model seems like a bad choice, since they all are highly
correlated with each other. In this application and with these highly-correlated predictors, I would choose
the average beauty score as the single representative of these variables. Since the correlations between the
beauty variables are the highest when comparing with average beauty score (all correlations > 0.75), it seems
to be a reasonable choice.

10. Drop all of the beauty variables except the average beauty score from the model.
## new MLR model with ONLY bty_avg, cls_perc_eval, cls_did_eval,
## cls_students, age AS EXPLANATORY VARIABLES

11. Did the standard errors of the explanatory variables change? How did they change?

12. Drop the variable with the highest p-value (as long as it is above 0.05) and re-fit the
model. Did the coefficients and significance of the other explanatory variables change?
If not, what does this say about whether or not the dropped variable was collinear with
the other explanatory variables?

# run a model with the variables you left in
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# run a summary of your new model

A model selection method used in statistics is called “backward-selection”. The process is as follows:

• Fit the full model (all possible quantitative variables)

• Find the p-values of each variable in the model

• Delete the one variable with the largest p-value, as long as the p-value is larger than your specified
significance level (say, α = 0.05)

• Re-fit the model without that deleted variable

• Find the p-values of each variable in the new model

• Delete the one variable with the largest p-value, as long as the p-value is larger than your specified
significance level (say, α = 0.05)

This process continues until all of the variables included in the model have p-values less than your specified
significance level (say, α = 0.05).

13. Using this procedure as the selection method, determine the best model. You do not
need to show all steps in your answer, just the output for the final model.

## code for model fitting here!

## include your code for the FINAL model you choose!

14. Based on your final model, describe the characteristics of a professor and course at Uni-
versity of Texas at Austin that would be associated with a high evaluation score.

15. The original paper describes how these data were gathered by taking a sample of pro-
fessors from the University of Texas at Austin and including all courses that they have
taught. Considering that each row represents a course, could this new information have
an impact on any of the conditions of linear regression?
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