Solutions Project 7
20 points

1. (2 pts) If \(p \sim \text{Beta}(\alpha, \beta) \), then the density is \(cp^{\alpha-1}(1-p)^{\beta-1} \) where \(c \) is a constant that does not depend on \(p \). The log transformed density is \(l(p) = \log(c) + (\alpha-1)\log(p) + (\beta-1)\log(1-p) \). The first derivative is \(\frac{d}{dp} l(p) = (\alpha-1)/p - (\beta-1)/(1-p) \) which shows that \(p = \frac{\alpha-1}{\alpha + \beta - 2} \) is a critical point.

For \(\alpha>1 \) and \(\beta>1 \), \(\frac{d^2}{dp^2} l(p) = -(\alpha-1)/p^2 - (\beta-1)/(1-p)^2 \) is always negative, in which case \(p = \frac{\alpha-1}{\alpha + \beta - 2} \) is the maximum. If both \(\alpha<1 \) and \(\beta<1 \), then in fact \(p = \frac{\alpha-1}{\alpha + \beta - 2} \) is a minimum! If only one of \(\alpha<1 \) or \(\beta<1 \), then \(p = \frac{\alpha-1}{\alpha + \beta - 2} \) could be a maximum or a minimum possibly occurring outside of the sample space \(0 \leq p \leq 1 \) for \(p \).

2. (3 pts)
 a. The pdf for a single geometric observation \(y \) is \(f(y \mid p) = p(1-p)^{y-1} \). Thus, the likelihood is \(L(y_1, \ldots, y_n \mid p) = p^n(1-p)^{\sum y_i - n} \).
 b. The prior is a Uniform distribution on \([0,1]\).
 c. The posterior is
 \[
 f(p \mid y_1, \ldots, y_n) \propto \left(p^n(1-p)^{\sum y_i - n} \right) \times 1
 \]
 which is proportional to \(\text{Beta}(\alpha^* = n + 1, \beta^* = \sum y_i - n + 1) \).
 d. The mean of the posterior is \(\hat{p}_B = \frac{\alpha^*}{\alpha^* + \beta^*} = \frac{n + 1}{\sum y_i + 2} \).
 e. The MAP estimator is the maximizer of \(\text{Beta}(\alpha^* = n + 1, \beta^* = \sum y_i - n + 1) \). By Problem #1 above,
 \[
 \hat{p}_{\text{MAP}} = \frac{\alpha^* - 1}{\alpha^* + \beta^* - 2} = \frac{n}{\sum y_i} = \frac{1}{\bar{y}}
 \]
 which is the same as the MLE for \(p \) (Exercise 9.97b).

3. (2 pts)
 a. Since \(n=10 \) and \(\sum y_i = 3055 \), then #2c shows that the posterior is \(\text{Beta}(\alpha^* = 11, \beta^* = 3046) \).
 b. By #2d, \(\hat{p}_B = \frac{\alpha^*}{\alpha^* + \beta^*} = \frac{11}{3057} = 0.0036 \).
c. By #2e, \(\hat{p}_{\text{MAP}} = \frac{\alpha^* - 1}{\alpha^* + \beta^* - 2} = \frac{10}{3055} = 0.0033 \).

d. By Exercise 9.97b, the MLE is \(\hat{p} = 1/\bar{Y} = 10/3055 = 0.0033 \) is the same as the MAP.

e. A 95% credible interval is \([0.0018, 0.0060]\). This was calculated using the R code

```
> y=c(362,51, 200, 511, 211, 420, 299, 280, 398, 323)
> sum(y)
[1] 3055
> n
[1] 10
> a = 0.05
> qbeta(c(a/2,1-a/2),11,3046)
[1] 0.001798173 0.006009527
```

f. The evidence suggests that with probability .95, the true probability of machine failure on any given day is between 0.0017 and 0.0060.

4. (4 pts)

a. For a Beta(\(\alpha^*, \beta^*\)) distribution, the mean is \(\alpha/(\alpha^* + \beta^*)\). When \(\alpha^* = \sum y_i + \alpha\) and \(\beta^* = n - \sum y_i + \beta\), then the mean is \(\hat{p}_B = \frac{\alpha^*}{\alpha^* + \beta^*} = \frac{\sum y_i + \alpha}{n + \alpha + \beta} = \frac{n}{n + \alpha + \beta} \hat{p}_{\text{MLE}} + \frac{\alpha}{n + \alpha + \beta}\) where \(\hat{p}_{\text{MLE}} = \sum \frac{y_i}{n}\).

b. Assuming that \(\alpha\) and \(\beta\) are constants,

\[
E(\hat{p}_B) = \frac{n}{n + \alpha + \beta} E(\hat{p}_{\text{MLE}}) + \frac{\alpha}{n + \alpha + \beta} = \frac{n}{n + \alpha + \beta} p + \frac{\alpha}{n + \alpha + \beta}.
\]

c. The bias is \(\text{Bias}(\hat{p}_B) = E(\hat{p}_B) - p = \frac{-\alpha - \beta}{n + \alpha + \beta} p + \frac{\alpha}{n + \alpha + \beta}\) which is non-zero as long as \(\alpha \neq \beta p/(1-p)\).

d. \(\text{Var}(\hat{p}_B) = \frac{n^2}{(n + \alpha + \beta)^2} \text{Var}(\hat{p}_{\text{MLE}}) = \frac{n^2}{(n + \alpha + \beta)^2} \times \frac{p(1-p)}{n} = \frac{np(1-p)}{(n + \alpha + \beta)^2}\).

e. Since \(\text{Var}(\hat{p}_B) = \frac{n^2}{(n + \alpha + \beta)^2} \text{Var}(\hat{p}_{\text{MLE}})\) and \(\frac{n^2}{(n + \alpha + \beta)^2} < 1\), then

\(\text{Var}(\hat{p}_B) < \text{Var}(\hat{p}_{\text{MLE}})\).

f. Note that \(\lim_{n \to \infty} \text{Bias}(\hat{p}_B) = \lim_{n \to \infty} \frac{-\alpha - \beta}{n + \alpha + \beta} p + \lim_{n \to \infty} \frac{\alpha}{n + \alpha + \beta} = 0 + 0 = 0\). Furthermore,

\[
\lim_{n \to \infty} \text{Var}(\hat{p}_B) = \lim_{n \to \infty} \frac{np(1-p)}{(n + \alpha + \beta)^2} = \lim_{n \to \infty} \frac{p(1-p)}{n + 2(\alpha + \beta) + \frac{(\alpha + \beta)^2}{n}} = 0.
\]

Application of the General Weak Law of Large Numbers (i.e., the more general version of Theorem 9.1) cinches the proof.
5. (2 pts) (Exercise 8.56 using a Bayesian analysis with a non-informative prior for \(p \)).

(a) The MLE is \(\hat{p}_{MLE} = \frac{360}{800} = 0.45 \). From the course notes, the posterior is

\[
\text{Beta}(\alpha^* = \sum y_i + 1 = 361, \beta^* = n - \sum y_i + 1 = 441),
\]

and the Bayesian estimate is \(\hat{p}_B = \frac{\alpha^*}{\alpha^* + \beta^*} = \frac{\sum y_i + 1}{n + 2} = \frac{361}{802} = 0.4501 \).

(b) A 98% CI for \(p \) is \(0.45 \pm 2 \times 3.26 \times 10^{-0.55} = 0.409, 0.491 \).

(c) A 98% credible interval for \(p \) is \([\hat{B}_0.01, \hat{B}_{0.99}] = [0.4095, 0.4911] \) where \(\hat{B}_q \) is the \(q \)th percentile from a Beta(361, 441). The R code is

\[
> \text{qbeta(c(.01,.99),361,441)}
\]

\[\{1\] 0.4094955 0.4911195
\]

(d) With probability 0.98, the true percentage of adults who say that movies are getting better is between 41% and 49%.

(e) Since the credible interval is BELOW 0.5, then the evidence suggests that a minority of adults say that movies are getting better.

6. (2 pts) Consider a SRS \(y_1, ..., y_n \) from \(N(\mu, \sigma^2) \) when \(\sigma^2 \) is known, and assume an uninformative, flat prior for \(\mu \).

(a) Since \(p(\mu) \propto 1 \), then

\[
p(\mu|y_1, ..., y_n) \propto \exp\left(-\frac{1}{2\sigma^2} \sum (y_i - \mu)^2\right)
\]

\[
\propto \exp\left(-\frac{1}{2\sigma^2} \sum (-2y_i \mu + \mu^2)\right)
\]

\[
= \exp\left(-\frac{1}{2\sigma^2} (-2\bar{y} \mu + n \mu^2)\right)
\]

\[
\propto \exp\left(-\frac{n}{2\sigma^2}(\bar{y}^2 - 2\bar{y} \mu + \mu^2)\right)
\]

\[
\propto N(\bar{y}, \sigma^2/n).
\]

(b) Since the normal posterior is uni-modal and symmetric, then \(\hat{\mu}_B = \hat{\mu}_{MAP} = \bar{y} \). Problem #6 in HW5 showed that \(\hat{\mu}_{MLE} = \bar{y} \).

7. (5 pts) Let \(y_1, ..., y_n \) denote a SRS from a Poisson(\(\lambda \)) distribution (as in Exercise 16.11).

(a) If the prior is \(p(\lambda) = \text{Gamma}(\alpha, \beta) \), then the posterior is

\[
p(\lambda|y_1, ..., y_n) \propto \left(\lambda^{\sum y_i - n}\lambda\right) \times \left(\lambda^{\alpha-1}e^{-\frac{\beta}{\lambda}}\right)
\]

\[
= \lambda^{\sum y_i + \alpha - 1} e^{-\lambda (\frac{n\beta + 1}{\beta})}
\]

\[
\propto \text{Gamma} \left(\alpha^* = \sum y_i + \alpha, \quad \beta^* = \frac{\beta}{n\beta + 1} \right)
\]
(b) The posterior parameters are \(\alpha^* = \sum y_i + \alpha, \beta^* = \frac{1}{n+1/\beta} = \frac{\beta}{n\beta+1} \).

(c) The Bayesian mean of the posterior is \(\hat{\lambda}_B = \alpha^* \beta^* = \frac{\beta (\sum y_i + \alpha)}{n\beta+1} = \frac{\beta (n\bar{y} + \alpha)}{n\beta+1} \).

(d) In Exam 1, it was shown that \(\hat{\lambda}_{MLE} = \bar{y} \).

(e) Assuming that \(\alpha \) and \(\beta \) are fixed, then, by 7c, \(E(\hat{\lambda}_B) = \frac{\beta (nE(\bar{y}) + \alpha)}{n\beta+1} = \frac{\beta (n\lambda + \alpha)}{n\beta+1} \).

(f) As long as \(\alpha \beta \neq \lambda \), \(\hat{\lambda}_B \) is biased.

(g) By #10c, \(\text{Var}(\hat{\lambda}_B) = \frac{n^2 \beta^2 \text{Var}(\bar{y})}{(n\beta+1)^2} = \frac{n\beta^2 \lambda}{(n\beta+1)^2} \).

(h) By #10g, \(\text{Var}(\hat{\lambda}_B) = \frac{n^2 \beta^2 \text{Var}(\hat{\lambda}_{MLE})}{(n\beta+1)^2} \). Since \(\frac{n^2 \beta^2}{(n\beta+1)^2} < 1 \), then \(\text{Var}(\hat{\lambda}_B) < \text{Var}(\hat{\lambda}_{MLE}) \).

(i) From #10e, \(\lim_{n \to \infty} E(\hat{\lambda}_B) = \frac{\beta (n\lambda + \alpha)}{n\beta+1} = \lambda \). From #10g, \(\lim_{n \to \infty} \text{Var}(\hat{\lambda}_B) = \frac{n\beta^2 \lambda}{(n\beta+1)^2} = 0 \).

Application of the more general version of Theorem 9.1 shows that \(\hat{\lambda}_B \) is consistent for \(\mu \).