Math 172 - Sequence and Series Review Problems - Sketch of Solutions

Notes regarding the sketches below:

- The solutions given below are only sketches of solutions, they are not written in a complete manor. Rather, they are indicative of one possible method of solution.
- All inequalites are valid for sufficiently large n .
- In the problems and solutions, we use $\sum a_{n}$ instead of $\sum_{n=1}^{\infty} a_{n}$, or $\sum_{n=k}^{\infty} a_{n}$ for any k, if the distinction is immaterial.

1. Determine if the following series converge or diverge. Determine the sum for convergent series.
(a) $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{2^{2 k}}=\frac{-4}{5}$ (Geometric Series: $\left.|r|=1 / 4<1\right)$
(b) $\sum_{k=0}^{\infty} 2^{k} 3^{2-k}=27$ (Geometric Series: $|r|=2 / 3<1$)
(c) $\sum_{k=1}^{\infty} \frac{3^{2 k+1}}{2^{3 k+1}}$ diverges (Geometric Series: $|r|=9 / 8 \geq 1$)
(d) $\sum_{k=1}^{\infty} \cos k$ diverges by the Test for Divergence.
(e) $\sum_{k=2}^{\infty} \frac{2}{k^{2}-1}=\frac{3}{2}$ (Telescoping Series: $\frac{2}{k^{2}-1}=\frac{1}{k-1}-\frac{1}{k+1}$)
(f) $\sum_{k=2}^{\infty} \frac{6}{4 k^{2}-9}=\frac{23}{15}$ (Telescoping Series: $\frac{6}{4 k^{2}-9}=\frac{1}{2 k-3}-\frac{1}{2 k+3}$)
2. Use the integral test to determine whether the following converge. Make sure you state/verify the hypotheses.
(a) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$ converges (Could also compare $0 \leq \frac{\ln n}{n^{2}} \leq \frac{\sqrt{n}}{n^{2}}=\frac{1}{n^{3 / 2}}$ and $\sum \frac{1}{n^{3 / 2}}$ converges.)
(b) $\sum_{n=2}^{\infty} \frac{n^{2}}{e^{n^{3}}}$ converges (Could also compare $0 \leq \frac{n^{2}}{e^{n^{3}}} \leq \frac{n^{2}}{e^{3 n}}=\frac{n}{e^{n}} \frac{n}{e^{n}} \frac{1}{e^{n}} \leq \frac{1}{e^{n}}$ and $\sum \frac{1}{e^{n}}$ converges. Could also use the Ratio Test, $\rho=0$, or the Root Test $L=0$.)
(c) $\sum_{n=3}^{\infty} \frac{1}{n \ln n}$ diverges (This series requires the Integral Test.) [or the Cauchy Condensation Test :]
3. Determine if the following series converge or diverge.
(a) $\sum \frac{n+2}{n^{4}}$ converges, Limit Comparison Test (L.C.T) with $\sum \frac{1}{n^{3}}$ which converges, or directly compare $0 \leq \frac{n+2}{n^{4}} \leq \frac{2 n}{n^{4}}=\frac{2}{n^{3}}$ and $2 \sum \frac{1}{n^{3}}$ converges.
(b) $\sum \frac{\cos (\pi n) \ln n}{n}$ converges, Alternating Series Test (A.S.T.) $\left[\right.$ note: $\left.\cos (\pi n)=(-1)^{n}\right]$
(c) $\sum \frac{\sqrt[4]{n^{3}-1}}{n^{2}+n}$ converges, direct comparison $0 \leq \frac{\sqrt[4]{n^{3}-1}}{n^{2}+n} \leq \frac{n^{3 / 4}}{n^{2}}=\frac{1}{n^{5 / 4}}$ and $\sum \frac{1}{n^{5 / 4}}$ converges
(d) $\sum \frac{2^{n}}{3^{n}+4^{n}}$ converges, direct comparison $0 \leq \frac{2^{n}}{3^{n}+4^{n}} \leq \frac{2^{n}}{3^{n}}$ and $\sum\left(\frac{2}{3}\right)^{n}$ converges
(e) $\sum \frac{2 n+1}{3 n^{2}+4}$ diverges, L.C.T. with $\sum \frac{1}{n}$ which diverges, or directly compare $\frac{2 n+1}{3 n^{2}+4} \geq \frac{2 n}{3 n^{2}+n^{2}}=$ $\frac{1}{2 n}$ and $\frac{1}{2} \sum \frac{1}{n}$ diverges.
(f) $\sum\left(1+\frac{(-1)^{n}}{n}\right)$ diverges, Test for Divergence
4. Determine if the following series absolutely converge, conditionally converge, or diverge.
(a) $\sum \frac{\sin n}{n^{2}+1}$ converges absolutely, direct comparison $0 \leq\left|\frac{\sin n}{n^{2}+1}\right| \leq \frac{1}{n^{2}}$ and $\sum \frac{1}{n^{2}}$ converges
(b) $\sum \frac{(2 n)!}{n^{5} 5^{n} n!}$ diverges, Ratio Test $\rho=\infty$
(c) $\sum \frac{n^{2} 2^{n}}{(2 n+1)!}$ converges absolutely, Ratio Test $\rho=0$
(d) $\sum \frac{(-1)^{n}}{n+\sqrt{n}}$ conveges conditionally, A.S.T. shows convergence, does not absolutely converge by comparison $\frac{1}{n+\sqrt{n}} \geq \frac{1}{n+n}=\frac{1}{2 n} \geq 0$ and $\sum \frac{1}{2 n}=\frac{1}{2} \sum \frac{1}{n}$ diverges
(e) $\sum\left(\frac{2 n+1}{3 n-2}\right)^{2 n}$ converges absolutely, Root Test $L=\frac{4}{9}$
(f) $\sum \frac{(-1)^{n} n^{3}}{\left(n^{2}+3\right)^{2}}$ converges conditionally, A.S.T shows convergence, does not absolutely converge by L.C.T with $\sum \frac{1}{n}$
5. Find the radius of convergence and interval of convergence for the following.
(a) $\sum \frac{(x-1)^{n}}{n 5^{n}} R=5, I=[-4,6)$
(d) $\sum n(2-x)^{n} R=1, I=(1,3)$
(b) $\sum \frac{(2 x)^{n}}{n^{n}} R=\infty, I=(-\infty, \infty)$
(e) $\sum \frac{(x+4)^{n}}{n^{4}} R=1,[-5,-3]$
(c) $\sum(5 x)^{n} R=1 / 5, I=(-1 / 5,1 / 5)$
(f) $\sum \frac{x^{n}}{n!} R=\infty, I=(-\infty, \infty)$
6. True/False Questions. If false, provide a counterexample.
(a) T/F If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\left\{a_{n}\right\}$ converges. True. $\left|a_{n}\right| \rightarrow 0 \Longrightarrow a_{n} \rightarrow 0$, Squeeze Theorem.
(b) T/F If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\sum a_{n}$ converges. False. $1 / n \rightarrow 0$ but $\sum 1 / n$ diverges.
(c) T/F If $\lim _{n \rightarrow \infty} a_{n}=1$ then $\left\{a_{n}\right\}$ converges. True, definition.
(d) T/F If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$ then $\left\{a_{n}\right\}$ converges. False. Take $a_{n}=(-1)^{n}$.
(e) T/F If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$ then $\sum a_{n}$ converges. False. Test for Divergence.
(f) T/F If $\lim _{n \rightarrow \infty} a_{n}=\infty$ then $\left\{a_{n}\right\}$ converges. False. The sequence diverges to infinity.
(g) T/F The power series $\sum a_{n} x^{n}$ can diverge for all values of x. False. Power series always converge at their center, in this case $x=0$.
(h) T / F The power series $\sum a_{n} x^{n}$ can converge for all values of x. True.
(i) T / F If the power series $\sum a_{n} x^{n}$ converges for $x=-2$ then the series converges for $x=1$. True. Convergence at $x=-2$ implies the radius of convergence is at least 2 .
(j) T/F If $\sum a_{n}$ converges conditionally then $\sum\left|a_{n}\right|$ converges. False. By definition, a conditionally convergent series is not absolutely convergent.
