A partial sum s_n is defined as the sum of terms of a sequence $\{a_k\}$. For instance,

$$s_n = \sum_{k=1}^n a_k = a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n$$

If the partial sums s_n converge then we say the infinite series converges and write:

$$s = \lim_{n \to \infty} s_n = \sum_{k=1}^{\infty} a_k$$

If the limit $\lim_{n\to\infty} s_n$ does not exist then we say the infinite series $\sum_{k=1}^{\infty} a_k$ diverges.

Geometric Series Test (GST)

If $a_n = a r^n$ then $\sum_{n=1}^{\infty} a_n$ is a geometric series which converges only if |r| < 1:

$$\sum_{n=0}^{\infty} a r^n = a + ar + ar^2 + \dots = \frac{a}{1-r} \quad , \quad |r| < 1$$

If $|r| \ge 1$ the geometric series diverges.

P-Series Test (PST)

If p > 1 the series $\sum \frac{1}{n^p}$ converges. Otherwise the series diverges.

Divergence Test (DT)

If $\lim_{n\to\infty} a_n \neq 0$ then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Integral Test (IT)

Suppose $a_n = f(n)$ where f(x) is a positive, decreasing, continuous function on $x \ge k$. Then

$$\sum_{n=k}^{\infty} a_n \quad and \quad \int_k^{\infty} f(x) dx$$

either both converge or both diverge.

$$0 < a_n \le b_n$$
 and $\sum_{n=1}^{\infty} b_n$ converges $\Rightarrow \qquad \sum_{n=1}^{\infty} a_n$ converges
 $0 < b_n \le a_n$ and $\sum_{n=1}^{\infty} b_n$ diverges $\Rightarrow \qquad \sum_{n=1}^{\infty} a_n$ diverges

Limit Comparison Test (LTC)

Let a_n and b_n be positive and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$$

Then the series $\sum a_n$ and $\sum b_n$ either both converge or both diverge.

When $L = 0, \infty$ we have the following variants:

$$L = 0 \quad and \quad \sum b_n \quad converges \quad \Rightarrow \sum a_n \quad converges$$
$$L = \infty \quad and \quad \sum b_n \quad diverges \quad \Rightarrow \sum a_n \quad diverges$$

Alternating Series Test (AST)

Suppose $\{a_n\}$ is a positive decreasing sequence:

$$a_n > 0$$

$$a_{n+1} \le a_n$$

$$\lim_{n \to \infty} a_n = 0$$

1

then the alternating series

$$s = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + a_5 - a_6 + \cdots$$

converges.

When the series converges, the difference between the n^{th} partial sum s_n and s is at most the value of the next term a_{n+1} , i.e.,

$$\left|\sum_{n=1}^{\infty} (-1)^{n-1} a_n - s_n\right| = |s - (a_1 - a_2 + a_3 - a_4 + \dots + a_n)| \le a_{n+1}$$

Absolute and Conditional Convergence

- If $\sum |a_n|$ converges then $\sum a_n$ is said to be <u>absolutely convergent</u>.
- If $\sum a_n$ converges but $\sum |a_n|$ diverges then $\sum a_n$ is said to be <u>conditionally convergent</u>.

Every absolutely convergence series is convergent.

Ratio Test (RT)

1) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$ then $\sum a_n$ converges absolutely (and hence converges)

2) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 then $\sum a_n$ diverges
= ∞ then $\sum a_n$ diverges

3) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L = 1$ then the test fails and nothing can be said

(ROOT) ROOT TEST

1) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$ then $\sum a_n$ converges absolutely (and hence converges)

2) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ then $\sum_{n=1}^{\infty} a_n$ diverges $= \infty$ then $\sum_{n=1}^{\infty} a_n$ diverges

3) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L = 1$ then the test fails and nothing can be said