Summary of Series Convergence/Divergence Theorems

A partial sum s, is defined as the sum of terms of a sequence {a;}. For instance,
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If the partial sums s, converge then we say the infinite series converges and write:
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If the limit lim,, . s, does not exist then we say the infinite series 220:1 aj diverges.

Geometric Series Test (GST)

If a, = a r" then )  a, is a geometric series which converges only if |r| < 1:
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If |r| > 1 the geometric series diverges.

P-Series Test (PST)

If p > 1 the series ) n—lp converges. Otherwise the series diverges.

Divergence Test (DT)

If limy, o0 @y, # 0 then the series Y > | a, diverges.

Integral Test (IT)

Suppose a,, = f(n) where f(x) is a positive, decreasing, continuous function on x > k. Then
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either both converge or both diverge.



Comparison Test (CT)

0<a,<b, and ) ° b, converges = >, ay converges
0<b,<a, and Y 2 b, diverges = > | ap diverges

Limit Comparison Test (LTC)

Let a,, and b, be positive and
lim =% =L >0
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Then the series Y a, and )_ b, either both converge or both diverge.

When L = 0, 00 we have the following variants:

L=0 and > b, converges =Y a, converges

L=o0co0 and > b, diverges = > a, diverges

Alternating Series Test (AST)

Suppose {a,} is a positive decreasing sequence:
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then the alternating series
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converges.

When the series converges, the difference between the n'* partial sum s, and s is at most
the value of the next term a, 1, i.e.,
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Absolute and Conditional Convergence

If > |a,| converges then ) a, is said to be absolutely convergent.

If > a, converges but »_ |a,| diverges then ) a,, is said to be conditionally convergent.

Every absolutely convergence series is convergent.



Ratio Test (RT)
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> a, converges absolutely (and hence converges)

> ay, diverges
> ay, diverges

the test fails and nothing can be said

> a, converges absolutely (and hence converges)

> ay, diverges
> a, diverges

the test fails and nothing can be said



