Math 333 (2015) Assignment 4 (Due: November 12, 2015) Maximum 55 points

1. (15) In each of the following an inner product space V with its associated inner product are defined. For the indicated vectors $u, v \in V$ compute $\langle u, v \rangle$ and d(u, v) = || u - v ||.

$$V = \mathbb{R}^{3} , \quad \langle u, v \rangle \equiv (Au)^{T} (Av) , \quad A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$
$$u = (1, 1, 1) , \quad v = (2, 0, 1)$$

b)

$$\begin{array}{rcl} V & = & C[0,1] & , & < u,v> \equiv \int_0^1 u(x)v(x)dx & , \\ u & = & x-1 & , & v=x+1 \end{array}$$

c)

$$V = M_{22} , \quad \langle u, v \rangle \equiv Tr(u^T v) ,$$

$$u = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} , \quad v = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}$$

- **2.** (5) If V = C[0,1] and $\langle u, v \rangle \equiv \int_0^1 u(x)v(x)dx$, find all α (if any) for which $u = \alpha 3x$ and $v = \alpha x + 1$ are orthogonal.
- 3. (15) For each of the following subspaces W of V, find a basis for the orthogonal complement W[⊥]. Write your final answer as W[⊥] = span{something}.
 a) V = ℝ⁴

$$W = row(A) \quad , \quad A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & 1 \\ 0 & 4 & 2 \end{bmatrix} \quad < u, v \ge u_1 v_1 + u_2 v_2 + u_3 v_3$$

b) $V = span\{v_1, v_2, v_3, v_4, v_5\} = span\{1, sin(x), cos(x), sin(2x), cos(2x)\}.$ Note: $v_k(x)$ defining V are mutually orthogonal.

$$W = span\{\cos^{2}(x), \sin^{2}(x)\} < u, v \ge \int_{0}^{2\pi} u(x), v(x)dx$$

c) $V = M_{22}$
 $W = \{u \in M_{22} : u^{T} = u\} < u, v \ge Tr(u^{T}v)$

4. (5) Let $V = P_2[0, 1]$ and define

$$\langle u, v \rangle = u(0)v(0) + u(1)v(1)$$

Is this an inner product on V? State all axioms (if any) that fail.

5. (5) Recall the Fredholm alternative Theorem $N(A^T) = col(A)^{\perp}$ or,

Theorem 1 Let $A \in \mathbb{R}^{n \times n}$. Then, Ax = b has a solution $\Leftrightarrow \langle v, b \rangle = 0$, $\forall v \in N(A^T)$.

Use this theorem to determine for what $\alpha \in \mathbb{R}$ (if any) the following system has a solution:

$$x_1 + 2x_2 - x_3 = \alpha$$

$$3x_1 + x_3 = 1 + \alpha$$

$$x_1 - x_2 + x_3 = 2 + 3\alpha$$

6. (5) Here $V = P_2[-1, 1]$ and $\langle u, v \rangle = \int_{-1}^1 u(x)v(x)dx$. The set

$$S = \{v_1, v_2, v_3\} = \left\{\frac{1}{\sqrt{2}}, \frac{\sqrt{6}}{2}x, \frac{\sqrt{10}}{4}(3x^2 - 1)\right\}$$

is an orthonormal basis for V. These are the first three normalized Legendre Polynomials used in Physics. Find $(w)_S$ if $w = \sqrt{18} (x^2 + x + 1)$. Simplify radicals.

7 (5) For the indicated inner product spaces V, subspaces W and vector u, compute the projection $w = proj_W u$ and w^{\perp} in the orthogonal decomposition $u = w + w^{\perp}$.

$$\begin{array}{rcl} V & = & P_3 & , & < u,v> \equiv \int_0^1 u(x)v(x)dx & , \\ u & = & x^3-x & , & W= span\{x^3,x^2+x\} \end{array}$$