Math 430 Mathematical Biology - Homework 2

Due: Tuesday, February 21, 2023.
NAME: \qquad
$\mathbf{1}$ [10pts] For the following difference equation:

$$
x_{n+1}=f\left(x_{n}\right)=-x_{n}^{2}\left(1-x_{n}\right)
$$

i) Compute the first 3 terms of the orbit

$$
\gamma\left(x_{0}\right)=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}
$$

using $x_{0}=\frac{1}{2}$. Write out x_{0}, x_{1}, x_{2} as exact fractions.
ii) Find all fixed points \bar{x} of the map. Note: some may be negative.
iii) Determine the stability of each fixed point.

2 [20pts] A frequently encountered model of fish population is given by Ricker's equation (see Greenwell 1984):

$$
x_{n+1}=\alpha x_{n} e^{-\beta x_{n}}
$$

Here x_{n} is the population in thousands at year $n, \alpha>0, \beta>0$.
a) Find the sole positive fixed point $\bar{x}>0$. For what α is this fixed point positive?
b) Show that \bar{x} is stable only if the growth rate α satisfies:

$$
|1-\ln \alpha|<1
$$

This is equivalent to $\alpha \in\left(\alpha_{1}, \alpha_{2}\right)$. What are α_{k} ?
c) Modify the posted code cobweb.m to create 3 cobweb figures of the model showing an attraction to a fixed point, an attraction to a period 2 orbit, and an attraction to a period 4 orbit.
d) What is the maximum possible value of x_{n} ? I want the formula involving α and β. Hint: What's the maximum value of $f(x)$ for $x>0$?

