Math 430 Mathematical Biology - Homework 3

Due: Tuesday, March 7, 2023.
NAME: \qquad

1) [20] For each of the four linear systems
i) find the general solution,
ii) classify the type of equilibria the origin is (saddle, center, etc)
iii) use pplane9.m to create a phase portrait for $-2<x<2,-2<y<2$

$$
\begin{align*}
& \frac{d \vec{x}}{d t}=A \vec{x}=\left[\begin{array}{ll}
3 & 2 \\
4 & 1
\end{array}\right] \vec{x} \tag{1}\\
& \frac{d \vec{x}}{d t}=A \vec{x}=\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right] \vec{x} \tag{2}\\
& \frac{d \vec{x}}{d t}=A \vec{x}=\left[\begin{array}{rr}
-4 & -17 \\
2 & 2
\end{array}\right] \vec{x} \tag{3}\\
& \frac{d \vec{x}}{d t}=A \vec{x}=\left[\begin{array}{rr}
1 & 1 \\
-17 & -1
\end{array}\right] \vec{x} \tag{4}
\end{align*}
$$

2) [10] For the following two nonlinear systems
i) Find all equilibria
ii) Use Figure 5.14 of the $\operatorname{text}(\operatorname{tr} A, \operatorname{det}(A)$ diagram) to classify each equilibria's type (saddle,...) Be careful with the second system especially when considering $x=0$.

$$
\begin{array}{ll}
\frac{d x}{d t}=x^{2}-y & \frac{d x}{d t}=x(1-x) \\
\frac{d y}{d t}=x-1 & \frac{d y}{d t}=y\left(1-\frac{y}{r}\right)
\end{array}
$$

3) [10] The dimensionless chemostat model is:

$$
\begin{align*}
\frac{d n}{d t} & =\alpha_{1} \frac{n c}{1+c}-n \tag{5}\\
\frac{d c}{d t} & =-\frac{n c}{1+c}-c+\alpha_{2} \tag{6}
\end{align*}
$$

i) The coexistence equilibria is physical only if (α_{1}, α_{2}) satisfy two inequalities (see posted notes or text for these). These in turn define a region in the (α_{1}, α_{2})-plane. Accurately draw (sketch or shade) this region (along with its bounding curves) only for positive (physical) α_{k}.
ii) Determine the equality (or equalities) which $\left(\alpha_{1}, \alpha_{2}\right)$ must satisfy for the extinction state (of bacteria) to be stable. As in i), draw/sketch the region in the (α_{1}, α_{2})-plane where the extinction state is stable.

