Math 430 Mathematical Biology - Homework 5

Due: Tuesday, April 18, 2023.
NAME: \qquad

1) [5] Use Law of Mass Action to write out the (molar) concentration differential equations for the following reactions.

$$
\begin{array}{r}
3 X+Y \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} X+Z \\
X+Y \xrightarrow{k_{3}} Z
\end{array}
$$

2) [10] Let $S=$ substrate, $B=$ buffer and $C=$ complex. A slightly different form of buffering is given by the reaction equations:

$$
2 S+B \underset{k_{-}}{\stackrel{k_{+}}{\rightleftarrows}} C
$$

Using the Law of Mass Action the differential equations governing the molar concentrations is given by:

$$
\begin{array}{rlrl}
\frac{d S}{d t} & =-2 k_{+} B S^{2}+2 k_{-} C & , & S(0)=S_{0} \\
\frac{d B}{d t} & =-k_{+} B S^{2}+k_{-} C \\
\frac{d C}{d t} & =k_{+} B S^{2}-k_{-} C \quad & B(0)=B_{0} \tag{3}\\
& , \quad C(0)=C_{0}
\end{array}
$$

a) Find the function $f(S, B)$ such that the above system can be reduced to

$$
\begin{aligned}
S^{\prime} & =2 f(B, S) \\
B^{\prime} & =f(B, S)
\end{aligned}
$$

b) Find the function $g(S)$ such that $f=0$ only if

$$
B=g(S)=\frac{\bar{V}}{K_{E}+S^{2}}
$$

for certain parameters \bar{V} and K_{E} (write these out in terms of the original model parameters: $k_{-}, k_{+}, S_{0}, B_{0}$)
c) Use Matlab or any other plotting program to make a phase plane portrait like that done in my lecture notes for the regular buffering problem. It should be in the (S,B)-plane, be first quadrant only, have an accurate plot of $f=0$ and several trajectories. Use the parameter values $k_{+}=k_{-}=$ $S_{0}=B_{0}=1$ and S values in $[0,2]$
3) [10] A variation of Michaelis-Menten kinetics is n-site cooperativity where n substrate molecules S must bind in order for the product P to be made. The reaction equations are:

$$
n S+E \underset{k_{2}}{\stackrel{k_{1}}{\longleftrightarrow}} C \xrightarrow{\stackrel{k_{2}}{\longrightarrow}} P+E
$$

The subsequent dimensional differential equations for the reaction are

$$
\begin{aligned}
\frac{d S}{d t} & =f_{1}=-n k_{1} S^{n} E+n k_{-1} C \\
\frac{d E}{d t} & =f_{2}=-k_{1} S^{n} E+\left(k_{-1}+k_{2}\right) C \quad, \quad \\
\frac{d C}{d t} & =-f_{2}=k_{1} S^{n} E-\left(k_{-1}+k_{2}\right) C \quad, \quad C(0)=E_{0} \\
\frac{d P}{d t} & =k_{2} C
\end{aligned}
$$

a) Without nondimensionalizing the equations, use conservation of receptors to find the quasi-steady state approximation of the production rate

$$
\frac{d P}{d t}=V(S)
$$

that only depends on S (and not E, C). This is the ubiquitous "Hille" function.
b) According to the fast-subsystem analysis (in class and notes), the complex concentration very quickly rises from 0 to a maximum value $C_{\max }$. Find a formula for $C_{\max }$

