Math 450 (2023) - Homework 3

Due: Friday, October 13, 2023.
NAME:

1. [6pts] Consider the initial value problem:

$$
y^{\prime \prime}+4 y=\ln \left(1+24 \epsilon y^{2}\right) \quad, \quad y(0)=1 \quad, \quad y^{\prime}(0)=0
$$

where $0<\epsilon \ll 1$. Find $y_{0}(t)$ and $y_{1}(t)$ in the assumed expansion of the solution y :

$$
y(t, \epsilon)=y_{0}(t)+\epsilon y_{1}(t)+O\left(\epsilon^{2}\right)
$$

2. [7pts] Regular perturbation techniques can be applied to approximate the solution of two-point Boundary Value Problems (BVP). Let $y(x)$ be the solution of the nonlinear BVP

$$
y^{\prime} y^{\prime \prime}=\epsilon x\left(y^{\prime}\right)^{2} \quad, \quad y(0)=0 \quad, \quad y(1)=1
$$

where $0<\epsilon \ll 1$. Notice that the values of $y(x, \epsilon)$ are specified at the boundaries $x=0$ and $x=1$.

Find $y_{0}(x)$ and $y_{1}(x)$ in the assumed expansion of the solution y :

$$
y(x, \epsilon)=y_{0}(x)+\epsilon y_{1}(x)+O\left(\epsilon^{2}\right)
$$

3. [7pts] Let $y(t, \epsilon)$ be the solution of the initial value problem

$$
\begin{aligned}
y^{\prime \prime}+y & =\epsilon y\left(y^{\prime}\right)^{2} \quad, \quad 0<\epsilon \ll 1 \\
y(0) & =0, \quad y^{\prime}(0)=1
\end{aligned}
$$

where ()' denotes differentiation with respect to t. Assume

$$
\begin{aligned}
y(t, \epsilon) & =y_{0}(\tau)+\epsilon y_{1}(\tau)+O\left(\epsilon^{2}\right) \\
\tau & =\omega(\epsilon) \equiv 1+\omega_{1} \epsilon+O\left(\epsilon^{2}\right)
\end{aligned}
$$

where $y_{k}(\tau)$ are 2π-periodic in τ. Use Poincare Lindstedt's method to find $y_{0}(\tau)$ and the corrected period of the oscillation, i.e., T_{0} and T_{1} in the exact period (in the original time t):

$$
T(\epsilon)=\frac{2 \pi}{\omega(\epsilon)}=T_{0}+\epsilon T_{1}+O\left(\epsilon^{2}\right)
$$

You will need to look up appropriate trigonometric identities to complete the problem. You do not need to find $y_{1}(\tau)$.

