Math 450 (2023) - Homework 5

Due: Friday November 17, 2023.
NAME: \qquad

1. [10 pts] For the functionals $J(y)$ defined in a) and b)
i) Define the set of admissible variations \mathcal{A}^{*} so that $y+h \in \mathcal{A}$ whenever $h \in \mathcal{A}^{*}$.
ii) Derive a formula for $\delta J(y, h)$ for general y, h.
iii) Use your result in ii) to compute $\delta J(\bar{y}, h)$ for the specific \bar{y}, h listed.
a) Let $J: \mathcal{A} \rightarrow \mathbb{R}$ where $\mathcal{A}=\left\{y \in C[0, \pi]: y^{\prime}(0)=1, y^{\prime}(\pi)=-1\right\}$. For $\alpha \in[0, \pi]$ define

$$
J(y) \equiv y(\alpha) y^{\prime}(\alpha) \quad, \quad \bar{y}(x)=\sin x \quad, \quad h(x)=\cos x
$$

Should get something that looks like the product rule for ii)
b) Let $J: \mathcal{A} \rightarrow \mathbb{R}$ where $\mathcal{A}=C^{2}[0,1]$.

$$
J(y) \equiv \int_{0}^{1} \sqrt{3 x+y(x) y^{\prime}(x)} d x \quad, \quad \bar{y}(x)=x \quad, \quad h(x)=2 x-1
$$

2. [5 pts] Use the Euler Lagrange equations to find the extrema $\bar{y}(x)$ of

$$
J(y) \equiv \int_{0}^{1} y(x)+\log \left(1+y^{\prime}(x)\right) d x
$$

over the admissible set

$$
\mathcal{A}=\left\{y: y \in C^{2}[0,1], y(0)=0, y(1)=0\right\}
$$

3. [5 pts] Use the Euler Lagrange equations to find all possible extrema $\bar{y} \in \mathcal{A}$ of

$$
\begin{aligned}
J(y) & \equiv \int_{0}^{\pi} 4 y^{\prime}(x)^{2}+2 y(x) y^{\prime}(x)-y(x)^{2} d x \\
\mathcal{A} & =\left\{y: y \in C^{2}[0, \pi], y^{\prime}(0)=A, y(\pi)=0\right\}
\end{aligned}
$$

for $A=1$ and $A=0$. Ask yourself: are there extrema and how many?
4. [5 pts] Find all the natural boundary conditions associated with extremizing $J(y)$ over \mathcal{A} for the following functionals and admissible sets.

$$
\begin{aligned}
J(y) & =y(1)^{2}+\int_{0}^{1}\left(y^{2}-x y y^{\prime 2}\right) d x \\
\mathcal{A} & =\left\{y: y \in C^{2}[0,1], y(0)=1\right\}
\end{aligned}
$$

Do not find the extrema. Just derive all the natural boundary conditions. It is easiest if one derives the conditions using a general Lagrangian. For example, start with

$$
J(y)=y(1)+\int_{0}^{1} L\left(x, y, y^{\prime}\right) d x
$$

for an arbitrary Lagrangian L.

