Math 451 (2024) - Homework 2
 (THROUGHOUT USE INTEGRAL TABLES AND ODE SOLVERS AS NEEDED)

Due: Friday, Feb. 9, 2024.
NAME: \qquad

1. [5 pts] Define $f_{\lambda}(x) \equiv \sin (\lambda x) \in L^{2}[0, \pi]$ for $\lambda \in \mathbb{R}$. Here λ need not be an integer.
a) Compute $F(\lambda) \equiv\left\|f_{\lambda}\right\|$ for all $\lambda \neq 0$ and show F is constant on the integers.
b) Compute $G(\lambda, \mu) \equiv<f_{\lambda}, f_{\mu}>$ for $\lambda \neq \pm \mu$
c) Show that for nonzero λ, μ the functions f_{λ} and f_{μ} are orthogonal only if

$$
h(\lambda)=h(\mu) \quad \text { where } \quad h(z)=\frac{\tan (\pi z)}{z}
$$

Aside from getting you to compute norms and inner products, the result in c) can be used to show that if one fixes μ at some value then there exists $\lambda_{n} \neq n$ such that $\left\{\phi_{n}(x)\right\}=$ $\left\{\sin \left(\lambda_{n} x\right)\right\}_{n \geq 1}$ is an orthogonal set much like $\{\sin (n x)\}_{n \geq 1}$ was shown to be in class.
2. [6 pts] The Legendre polynomials are a sequence of $n^{\text {th }}$ degree polynomials $\left\{P_{n}(x)\right\}_{n \geq 1}$ defined by:

$$
\begin{align*}
P_{0}(x) & =1 \tag{1}\\
P_{1}(x) & =x \tag{2}\\
(n+1) P_{n+1}(x) & =(2 n+1) x P_{n}(x)-n P_{n-1}(x) \quad n=1,2, \ldots \tag{3}
\end{align*}
$$

a) Use the recursion formula above to write out $P_{2}(x), P_{3}(x)$ and $P_{4}(x)$.
b) It can be shown that $\left\{P_{n}(x)\right\}$ are mutually orthogonal in $L^{2}[-1,1]$. Use this fact to determine a_{n} in the following expansion

$$
1+x+x^{2}=\sum_{n=0}^{\infty} a_{n} P_{n}(x)
$$

You may use the fact that $a_{n}=0, \forall n \geq 3$ (Why?) and $a_{n}=\frac{\left\langle f, P_{n}\right\rangle}{\left\langle P_{n}, P_{n}\right\rangle}$.
3. [6 pts] For every function $f(x) \in L^{2}[0, \pi]$ there are c_{n} such that

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \sin (n x)
$$

a) Compute c_{n} for $f(x)=\sin (\beta x)$ where β is not an integer.
b) Use Parseval's identity and the result in a) to determine a formula for S where

$$
S=\sum_{n=1}^{\infty} \frac{n^{2}}{\left(\beta^{2}-n^{2}\right)^{2}}
$$

4. [18 pts] Below are three regular Sturm-Liouville eigenvalue Problems (SLP)
(I) $\quad y^{\prime \prime}+\lambda y=0$
$y(0)=0$
$y^{\prime}(1)=0$
$(I I) \quad y^{\prime \prime}+\lambda y=0$
$y(0)+y^{\prime}(0)=0 \quad y(1)=0$
(III) $\quad \frac{d}{d x}\left((2+x)^{2} \frac{d y}{d x}\right)+\lambda y=0$
$y(-1)=0$
$y(1)=0$

Find all eigenvalues λ_{n} and associated eigenfunctions $y_{n}(x)$ for each of (I)-(III) above. When possible find an explicit formula for λ_{n} as in $\lambda_{n}=n^{2}$. If you can not find an explicit formula, λ_{n} will be roots of some function $f(z)$ as in $f\left(\lambda_{n}\right)=0$. In those cases state what $f(z)$ is.

Remarks: For (II) you may want to write the general solution in the form:

$$
y(x)=c_{1} \sin (\mu(x-1))+c_{2} \cos (\mu(x-1))
$$

Also, problem (III) is Cauchy-Euler in $z=x+2$, i.e. $y(x)=(x+2)^{r}$ results in an equation for r in terms of λ. Take special note of the $\lambda>\frac{1}{4}$ case.

