Math 451 (2024) - Homework 2 (THROUGHOUT USE INTEGRAL TABLES AND ODE SOLVERS AS NEEDED)

Due: Friday, Feb. 9, 2024.

NAME:

- **1.** [5 pts] Define $f_{\lambda}(x) \equiv \sin(\lambda x) \in L^2[0,\pi]$ for $\lambda \in \mathbb{R}$. Here λ need not be an integer.
 - a) Compute $F(\lambda) \equiv || f_{\lambda} ||$ for all $\lambda \neq 0$ and show F is constant on the integers.
 - b) Compute $G(\lambda, \mu) \equiv \langle f_{\lambda}, f_{\mu} \rangle$ for $\lambda \neq \pm \mu$
 - c) Show that for nonzero λ, μ the functions f_{λ} and f_{μ} are orthogonal only if

$$h(\lambda) = h(\mu)$$
 where $h(z) = \frac{\tan(\pi z)}{z}$

Aside from getting you to compute norms and inner products, the result in c) can be used to show that if one fixes μ at some value then there exists $\lambda_n \neq n$ such that $\{\phi_n(x)\} =$ $\{\sin(\lambda_n x)\}_{n\geq 1}$ is an orthogonal set much like $\{\sin(nx)\}_{n\geq 1}$ was shown to be in class.

2. [6 pts] The Legendre polynomials are a sequence of n^{th} degree polynomials $\{P_n(x)\}_{n\geq 1}$ defined by:

$$P_0(x) = 1 \tag{1}$$

$$P_1(x) = x \tag{2}$$

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x) \qquad n = 1, 2, \dots$$
(3)

- a) Use the recursion formula above to write out $P_2(x)$, $P_3(x)$ and $P_4(x)$.
- b) It can be shown that $\{P_n(x)\}$ are mutually orthogonal in $L^2[-1,1]$. Use this fact to determine a_n in the following expansion

$$1 + x + x^2 = \sum_{n=0}^{\infty} a_n P_n(x)$$

You may use the fact that $a_n = 0, \forall n \ge 3$ (Why?) and $a_n = \frac{\langle f, P_n \rangle}{\langle P_n, P_n \rangle}$.

3. [6 pts] For every function $f(x) \in L^2[0, \pi]$ there are c_n such that

$$f(x) = \sum_{n=1}^{\infty} c_n \sin(nx)$$

- a) Compute c_n for $f(x) = sin(\beta x)$ where β is not an integer.
- b) Use Parseval's identity and the result in a) to determine a formula for S where

$$S = \sum_{n=1}^{\infty} \frac{n^2}{(\beta^2 - n^2)^2}$$

- 4. [18 pts] Below are three regular Sturm-Liouville eigenvalue Problems (SLP)
 - (I) $y'' + \lambda y = 0$ y(0) = 0 y'(1) = 0

(II)
$$y'' + \lambda y = 0$$
 $y(0) + y'(0) = 0$ $y(1) = 0$ (4)

(III) $\frac{d}{dx}\left((2+x)^2\frac{dy}{dx}\right) + \lambda y = 0 \qquad y(-1) = 0 \qquad y(1) = 0$

Find all eigenvalues λ_n and associated eigenfunctions $y_n(x)$ for each of (I)-(III) above. When possible find an explicit formula for λ_n as in $\lambda_n = n^2$. If you can not find an explicit formula, λ_n will be roots of some function f(z) as in $f(\lambda_n) = 0$. In those cases state what f(z) is.

Remarks: For (II) you may want to write the general solution in the form:

$$y(x) = c_1 \sin(\mu(x-1)) + c_2 \cos(\mu(x-1))$$

Also, problem (III) is Cauchy-Euler in z = x + 2, i.e. $y(x) = (x + 2)^r$ results in an equation for r in terms of λ . Take special note of the $\lambda > \frac{1}{4}$ case.