Math 451 (2024) - Homework 6

Due: Friday, January 26, 2024.
NAME: \qquad

1. [10 pts] Find the extrema of

$$
J(y) \equiv \int_{0}^{1} x y(x) d x
$$

over

$$
\mathcal{A}=\left\{y \in C^{2}[0,1]: y(0)=0, y(1)=0\right\}
$$

subject to the constraint

$$
K(y) \equiv \int_{0}^{1} y^{\prime}(x)^{2} d x=1
$$

see: Notes 3g, pgs 6-10.
2. [5 pts] Consider the motion of a particle in the (x, y)-plane with Lagrangian

$$
L=T-V=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-V(r)
$$

where $V(r)$ is the potential energy and T is the kinetic energy. Re-express the Lagrangian in polar coordinates (r, θ), i.e., $L=L(r, \dot{r}, \theta, \dot{\theta})$ (show your derivation of the kinetic energy term into polar coordinates). Then, write out the Euler-Lagrange equations. These are the equations of motion for planar motion of a particle under the influence of a radially symmetric force. Don't solve them. see: Notes 3e, pgs 6.
3. [5 pts] Let $\Gamma=(X(t), Y(t), Z(t))$ with $0<t<1$ be a geodesic on the the graph $z=y-2 x^{2}$. Assume that $y=y(x)$ is a function of x on Γ. Under this assumption show that for an appropriate Lagrangian $L\left(x, y, y^{\prime}\right)$ the length functional

$$
J(y)=\int_{0}^{1} \sqrt{\dot{X}^{2}+\dot{Y}^{2}+\dot{Z}^{2}} d t=\int_{a}^{b} L\left(x, y, y^{\prime}\right) d x
$$

where $y^{\prime} \equiv \frac{d y}{d x}$ and

$$
L=\sqrt{1+\left(y^{\prime}\right)^{2}+\left(y^{\prime}-4 x\right)^{2}}
$$

Then the Euler-Lagrange equations are:

$$
0=\frac{d}{d x} L_{y^{\prime}}
$$

so that for some constant c

$$
L_{y^{\prime}}=c
$$

Find the $y(x)$ that defines the geodesic satisfying the boundary conditions

$$
y^{\prime}(0)=0 \quad, \quad y(1)=1
$$

see: Notes $\mathbf{3 f}(\mathrm{ii})$, much of it

