Math 451 (2024) - Homework 8
 (THROUGHOUT USE INTEGRAL TABLES AND ODE SOLVERS AS NEEDED)

Due: Wednesday February 28, 2024.
NAME: \qquad

1. [10 pts] Find the Green's functions $g(x, \zeta)$ for the following problems:

$$
\begin{aligned}
-\frac{d^{2} u}{d x^{2}} & =f(x) \quad, \quad u(0)=u^{\prime}(1)=0 \\
-\frac{d}{d x}\left(x^{2} \frac{d u}{d x}\right)+2 u & =f(x), \quad 2 u(1)+u^{\prime}(1)=u^{\prime}(2)=0
\end{aligned}
$$

2. [5 pts] Show that the eigenfunctions of

$$
\begin{aligned}
L u & \equiv-u^{\prime \prime}, \quad u \in D \\
D & =\left\{u \in C^{2}[0,1]: u(0)=0, u(1)+u^{\prime}(1)=0\right\}
\end{aligned}
$$

are $u_{n}(x)=\sin \sqrt{\lambda_{n}} x$ for $n=1,2, \ldots$ where λ_{n} are roots of $F(\lambda) \equiv \tan \sqrt{\lambda}-\sqrt{\lambda}$. Using these eigenfunctions find the series representation of the Green's function $g(x, \zeta)$ for the following problem:

$$
L u \equiv u^{\prime \prime}=f(x) \quad, \quad u(0)=0 \quad, \quad u(1)+u^{\prime}(1)=0
$$

The answer will involve the unknown values of λ_{n}.
3. [5 pts] Define the operator L and its domain by:

$$
\begin{aligned}
L u & \equiv-\left(k(x) u^{\prime}\right)^{\prime} \quad, \quad k(x)>0 \\
D & \equiv\left\{u \in C^{2}[0,1]: u(0)=u(1)=0\right\}
\end{aligned}
$$

Determine the inverse operator L^{-1}

$$
L^{-1} f=\int_{0}^{1} g(x, \zeta) f(\zeta) d \zeta
$$

Write your answer in terms of the function

$$
K(x) \equiv \int_{0}^{x} \frac{1}{k(s)} d s
$$

