Due: Wednesday February 28, 2024.

NAME: ____

1. [10 pts] Find the Green's functions $g(x, \zeta)$ for the following problems:

$$-\frac{d^2u}{dx^2} = f(x) , \quad u(0) = u'(1) = 0$$
$$-\frac{d}{dx}\left(x^2\frac{du}{dx}\right) + 2u = f(x) , \quad 2u(1) + u'(1) = u'(2) = 0$$

2. [5 pts] Show that the eigenfunctions of

$$Lu \equiv -u'' , \quad u \in D$$
$$D = \left\{ u \in C^2[0,1] : u(0) = 0 , \ u(1) + u'(1) = 0 \right\}$$

are $u_n(x) = \sin \sqrt{\lambda_n} x$ for n = 1, 2, ... where λ_n are roots of $F(\lambda) \equiv \tan \sqrt{\lambda} - \sqrt{\lambda}$. Using these eigenfunctions find the series representation of the Green's function $g(x, \zeta)$ for the following problem:

$$Lu \equiv u'' = f(x)$$
 , $u(0) = 0$, $u(1) + u'(1) = 0$

The answer will involve the unknown values of λ_n .

3. [5 pts] Define the operator L and its domain by:

$$Lu \equiv -(k(x)u')' , \quad k(x) > 0$$
$$D \equiv \{u \in C^2[0,1] : u(0) = u(1) = 0\}$$

Determine the inverse operator L^{-1}

$$L^{-1}f = \int_0^1 g(x,\zeta)f(\zeta)d\zeta$$

Write your answer in terms of the function

$$K(x) \equiv \int_0^x \frac{1}{k(s)} \, ds$$