Math 451 (2024) - Homework 9
 (THROUGHOUT USE INTEGRAL TABLES AND ODE SOLVERS AS NEEDED)

\qquad

1. [10 pts] Find the general solution of the following partial differential equations:
a) $t u_{x x}-4 u_{x}=0$ where $u=u(x, t)$ (Hint: $v=u_{x}$.)
b) $u_{x t}+\frac{1}{x} u_{t}=\frac{t}{x^{2}}$ where $u=u(x, t)$.
2. [5 pts] The solution $u(x, t)$ of the initial value problem

$$
\begin{aligned}
u_{t} & =D u_{x x}, \quad x \in \mathbb{R} \quad, \quad t>0 \\
u(x, 0) & =f(x)=e^{-x^{2}}
\end{aligned}
$$

is given by the fundamental solution of the heat equation (see notes or text).
a) Find an explicit (simplified) formula for $u(x, t)$ using:

$$
\int_{-\infty}^{\infty} e^{-\left(a x^{2}+b x+c\right)} d x=\sqrt{\frac{\pi}{a}} e^{\left(b^{2}-4 a c\right) / 4 a}
$$

b) Use your formula for the solution $u(x, t)$ to determine the time T at which the peak of $u(x, t)$ is one third its original value of one occurring at $x=0$, i.e.

$$
u(0, T)=\frac{1}{3} f(0)
$$

